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ata analytics has become not only an essential part of 
day-to-day decision making, but also reinforces long-
term strategic decisions. Whether it is real-time fraud 
detection, resource management, tracking and preven-

tion of disease outbreak, natural disaster management or intel-
ligent traffic management, the extraction and exploitation of 
insightful information from unparalleled quantities of data (Big-
Data) is now a fundamental part of all decision making processes. 
Success in making smart decisions by analyzing BigData is pos-
sible due to the availability of improved analytical capabilities, 
increased access to different data sources, and cheaper and im-
proved computing power in the form of cloud computing. How-
ever, BigData analysis is far more complicated than the perception 
created by the recent publicity. For example, one of the myths is 
that BigData analysis is driven purely by the innovation of new 
data mining and machine learning algorithms. 

While innovation of new data mining and ma-
chine learning algorithms is critical, this is only one 
aspect of producing BigData analysis solutions. Just 
like many other software solutions, BigData analysis 
solutions are not monolithic pieces of software that 
are developed specifically for every application. In-
stead, they often combine and reuse existing trusted 
software components that perform necessary data 
analysis steps. Furthermore, in order to deal with 
the large variety, volume and velocity of BigData, 
they need to take advantage of the elasticity of cloud 
and edge datacentrer computation and storage re-
sources as needed to meet the requirements of their 
owners. More specifically, many BigData analysis 
solutions today are organised as data-driven work-
flows that combine existing and new data analysis 

steps (which we often refer to as workflow activities). 
The flow of information between the analysis 

activities in a BigData analysis workflow is dynam-
ic, meaning it is either determined by the data pro-
duced in earlier steps in the workflow (we refer to 
these as data flow dependencies) or by the structure 
of the BigData analysis solution that orchestrates 
the data analysis activities in the workflow (we re-
fer to such structural orchestrations as control flow 
dependencies). Another dynamic aspect of BigData 
analytics workflows is mapping data analysis steps/
activities to the variety of computing and storage 
resources of the cloud and edge data center(s) with 
changing performance. Dealing with these dynamic 
aspects become more challenging in BigData analy-
sis applications which need to support owner’s de-
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cision making requirements (specified in form of 
Service Level Agreements (SLA)) in real-time. Any 
delay in meeting their requirements can cause loss 
of life (such as in disaster prediction and response 
situations), money (for example, in banking security 
and fraud situations), or the environment (for in-
stance, in resource exploration). These are some of 
the real penalties for failing to meet the real-time 
data analysis requirements in such decision support 
applications. Computing infrastructures supported 
by cloud and edge resources can help in solving such 
problems to some degree by providing elastic and 
on-demand computing infrastructure. They can also 
create additional challenges due to the heteroge-
neous nature of different cloud and edge resources 
and the dynamically changing performance of their 
computing infrastructure. 

In this Blue Skies installment, we point out the 
requirement of orchestration systems that can assist 
in management and execution of such BigData analy-
sis workflows on a cloud and edge infrastructure. We 
also discuss current state of art and point out open 
issues in a later section before concluding the article. 

An example BigData analysis Workflow 
As an example of a BigData analysis workflow, con-
sider Real-Time Flood Modelling (RTFM) for de-
tecting and predicting a flooding event by analyzing 
tweets and sensor data, as depicted in Figure 1. The 
RTFM workflow is triggered from long-range fore-
casting (for example from UK Met Office DataPoint) 
and radar scans at multiple scales are initiated and 
passed to statistical processing models, updating 
probability based forecasts.  
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FIGURE 1. Mapping of high level workflow activities of Real-Time Flood Modelling application to programming frameworks and 

cloud datacenter and/or Edge resources. The workflow orchestration is a cross-cutting issue as it spans across all the layers 

(analysis activities, programming framework, and datacenters).
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As an event progresses, streaming data sources 
(such as Twitter and ancillary data comparable to traf-
fic flows) can be processed to improve modelling fore-
casts of a rainfall event’s path and intensity.  Flood 
modelling ensembles must then be triggered and 
matched to known observations (for example from 
CCTV analysis or rain gauges) in a dynamic system.  
Flood model outputs are only part of the modelling 
process providing input into risk and impact mod-
els.  All of this is happening within a fluid, dynamic, 
evolving ecosystem where models are refined, re-run 
or abandoned as new information becomes available.  
In other words, the workflow includes several top-level 
data analytics activities. These include long-range 
forecasting, sensor data aggregation, Tweet analysis, 
flood modelling, CCTV image processing, and so on. 
Moreover, the execution of these activities need to be 
seamlessly coordinated such that real-time decision-
making performance objectives (for instance, mini-
mise event detection delay) are constantly achieved 
under various types of uncertainties (for example, 
changing data volume and velocity). Hence, the key to 
seamless execution of this new class of workflows is 
the issue of resource and data orchestration, which 
is quite complex due to complex BigData flow pat-
tern and the plethora of BigData programming 
frameworks, computational models, and infrastruc-
ture types (such as cloud datacenters and edge re-
sources) involved: 

1.	The latency sensitive CCTV image processing 
activity can benefit by performing “edge analyt-
ics” on the video frames by exploiting the on-
board processor (edge resources) supported by 
current generation of CCTV cameras (such as 
Waggle platform). Using edge analytics tech-
niques has multiple benefits: (i) reduced network 
congestion achieved by filtering non-relevant 
events at the edge; and (iii) reduction in event 
detection latency (for example, detecting dan-
gerous water flow level by analysing real-time im-
ages on-board processors available within CCTV 
cameras) as sensors no longer need to send data 
to far off cloud datacenters.

2.	The flood modelling activity, which does risk 
analysis by executing a complex hydrodynamic 
computational model in a message passing in-
terface data programming framework (OpenM-

PI), should be mapped to the cloud resources, 
because it is demanding of both storage (due to 
large historical rainfall records and ensemble 
city models) and computation (for simulating 
floods along large river reaches).

3.	Workflow activities are inter-dependent and 
changes in execution characteristics of one ac-
tivity (at run-time) will influence others. For 
example, the step handling the flood modelling 
is dependent on input (on rain and water level 
thresholds) from the sensor aggregation activity 
(analysing data from diverse real-time sensors).

4.	Tweet analysis activity requires distinct com-
putational models for anomaly detection (flood 
disasters are anomalous tweets), clustering to 
combine all the information from different 
tweets reporting flooded properties in a specific 
location, and classification to identify major 
events such as a flood. Moreover, these compu-
tational models require either a batch processing 
or stream processing data programming frame-
work, depending on data characteristics (histori-
cal vs. real-time tweets).  The activity needs to 
utilise specialised main memory NoSQL BigData 
framework and solid state storage resources avail-
able in the cloud datacenter to deal with Twitter’s 
data velocity and volume. 

To handle these complexities, the underlying 
Orchestration1 platform and techniques should be 
able to dynamically manage a workflow of activities 
(initially composed based on Domain expert inputs) 
on the resources available in the cloud datacenter 
(for example, Amazon Web Services) and on the 
edge (such as the Waggle platform) driven by pro-
cessing needs (for instance latency sensitive vs. 
non-latency sensitive), performance objectives (for 
example, minimise sensor stream processing latency 
vs. minimise flood model execution delay) and type 
of analytic tasks (CCTV image processing vs. flood 
modelling) relevant to activities. Current BigData 
workflow orchestration platforms (such as, Apache 
YARN, Apache Mesos, AWS Lambda, AWS IoT, 
Google Cloud Dataflow, Google TensorFlow) and re-
search assume either monolithic and purpose-built 
data analysis solutions that do not need to meet 
real-time decision support requirements (that is, 
no workflows, no dynamic orchestration of existing 
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and new data analysis activities, no implementation 
that can exploit both cloud datacenter and edge re-
sources, and no dynamic tuning of such implemen-
tations to meet the users’ real-time decision making 
requirements), or considers only solutions consist-
ing of data analysis workflows that have predictable 
performance (that is existing orchestration research 
ignores the complexities of resource and BigData 
management across cloud datacenter and edge re-
sources for data analytics workflows and does not 
deal with meeting real-time performance objectives 
as determined by owner’s SLA requirements).  

Last but not the least, the existing workflow 
composition frameworks such as OASIS TOSCA,2 
was developed for web services based workflows and 
allows workflow modelling and deployment speci-
fication up to two levels, software components and 
cloud services (that is, infrastructure). They do not 
allow composition of workflows at three different 
layers (see Figure 1) first at analytical activities, then 
at programming framework, and finally at datacen-
ter layer, nor  do they allow integration of dynamic 
QoS requirements of decision makers. 

Hence, the key research challenges that we 
perceive are the development of orchestration plat-
forms and techniques that can aid in dynamically 
composing workflows through an analytical work-
flow composition framework and developing a robust 
run-time algorithms that can automatically manage 
the allocation of the datacenter and edge resources 
to the analytic activities in response to unexpected 
changes in data volume, data velocity or other infra-
structure level issues (for example, congestion, avail-
ability, load-balancing, or anomalies, and so on.).

Understanding the BigData workflow 
Orchestration Challeneges 
To support such complicated and dynamically con-
figurable BigData workflow ecosystems, we need 
a new orchestration platforms and techniques for 
managing three layers: (i) sequence of data analy-
sis activities (the workflow) that needs to deal with 
real-time and historical datasets produced by dif-
ferent sources; (ii) heterogeneous BigData pro-
gramming frameworks; and (iii) the heterogeneous 
cloud and/or edge resources. The BigData workflow 
orchestration is a multi-level resource management 
and coordination process that spans across work-

flow activities, BigData programming frameworks 
and cloud/edge resources. It includes a range of 
programming operations, from workflow compo-
sition, mapping of workflow activities to BigData 
programming frameworks and cloud/edge resourc-
es, to monitoring their end-to-end run-time QoS 
and SLA statistics (for example, event detection 
delay, alert delay, load, availability, throughput, 
utilization, latency, etc.) for ensuring consistency 
and adaptive management. Briefly stated, major 
research challenges involved with developing or-
chestration platforms and techniques for BigData 
workflow applications include: 

Workflow composition: In a BigData analysis work-
flow (such as RTFM in Figure 1), workloads (data 
volume and velocity) pertaining to different activi-
ties are dependent on each other and changes in 
execution and data flow of one activity will influ-
ence others. For example, the flood modelling ac-
tivity is dependent on the real-time input on rain 
and water level thresholds from the sensor data 
aggregation and CCTV image processing activi-
ties. Hence, the hard challenges exist in developing 
workflow composition framework that can guide 
the domain experts (for example, flood modeller in 
a city council office) in specifying, understanding 
and managing the whole pipeline of activities, data 
and control flow inter-dependencies and their QoS 
and/or SLA objectives and measures.  For example, 
suppose we have two owners and/or decision mak-
ers for the workflow in Figure 1. The first owner 
is from a national disaster centre who is interested 
in information about any infrastructure damage, 
while another owner from the emergency man-
agement services (EMS) may be interested in in-
formation about human fatalities and injuries. In 
this case, the workflow in Figure 1 will dynamically 
need to compose different clustering activities (in-
frastructure damages vs human fatalities) that will 
both utilise the data flow from the anomaly detec-
tion activity. Hence, based on decision maker goal 
workflow composition pattern changes. Moreover, 
the problem is further complicated by the fact that 
type and mix of workflow activities, data and con-
trol flow inter-dependencies and their QoS and/or 
SLA measures varies significantly across different 
application domains (such as, real-time air pollution 
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monitoring, real-time traffic congestion monitoring, 
remote patient monitoring, etc.). 

Workflow mapping: Mapping BigData workflow 
(graph of data analysis activities) to BigData pro-
gramming frameworks and cloud/edge resources 
demands selecting bespoke configurations from 
abundance of possibilities. Therefore, the mapping 
process for has to take into account diverse configu-
ration selection decision. For example, 

•	 BigData programming frameworks: Select opti-
mal configurations for each framework (for ex-
ample, in context of stream processing engine 
such as Apache Storm one needs to determine 
optimal mix and number of spouts, bolts, and 
worker instances to minimize data processing 
latency of stream processing activities) 

•	 Cloud resources: Consider configurations such 
as datacenter location, pricing policy, server 
hardware features, virtualization features, up-
stream/downstream network latency, a 

•	 Edge resources: Consider configurations such 
as Edge device (Raspberry Pi 3, UDOO board, 
esp8266) hardware features (for example, CPU 
power, main memory size, storage size) , up-
stream/downstream network latency, supported 
virtualization features, and so on. Above diverse 
configuration space coupled with conflicting 
(trade-off) QoS and SLA requirements leads to 
exponential growth of potential search space. At 
the mapping stage, orchestration platform needs 
to utilise scheduling resource allocation tech-
niques that can allow selection of optimal plat-
form (BigData frameworks) and infrastructure 
(cloud or edge) configurations for given different 
workflow components. These techniques also 
need to consider QoS or SLA requirements such 
as deployment costs, response time, data process-
ing speed, security level specified by decision 
makers depending on the application context. 
These constraints make the mapping problem of 
each workflow activity to BigData programming 
framework and datacenter layers NP-Complete. 
The mapping problem can be easily deducted 
toto a 0-1 Knapsack or bin-packing problem de-
pending on the constraints given by the decision 
maker and/or owner. 

Workflow QoS monitoring: After the deployment 
of BigData workflow applications it is important to 
monitor the run-time QoS and data flow across each 
activity in the graph, so that administrators and de-
velopers can track how application is performing. 
Much of the difficulty in QoS monitoring from the 
inherent scale and complexity of BigData workflow 
application. The problem is complicated because 
QoS metrics for workflow activities, BigData frame-
works, and cloud/edge resources, are not necessarily 
the same. For example, key QoS metrics are i) event 
detection and decision making delay for sensor data 
analysis activity; ii) tweet classification delay and 
accuracy for Tweet Analysis activity;  iii) through-
put and latency in distributed data ingestion frame-
works (Apache Kafka), iii) response time in batch 
processing frameworks (Apache Hadoop), (iv) read/
write latency and throughput for distributed file sys-
tem frameworks (for instance, Hadoop Distributed 
File system ); v) server utilization, throughput, and 
energy-efficiency for cloud resources; and (vi) net-
work stability, throughput optimality, routing delays, 
fairness in resource sharing, available bandwidth, 
etc. for the Edge resources. 

Therefore it is not clear how i) these QoS met-
rics could be defined and formulated coherently 
across workflow activities, BigData programming 
frameworks, and/or cloud/edge resources and  ii) the 
various QoS metrics should be combined to give a 
holistic view of data analysis flows. Moreover, to en-
sure workflow-level performance SLAs we must also 
monitor workload input metrics (data volume, data 
velocity, data variety and sources, types and mix of 
analytics queries) across diverse workflow activities.

Workflow dynamic reconfiguration: The dynamic 
reconfiguration of BigData workflows in the com-
plex  computing infrastructure (Cloud + Edge + 
multiple BigData frameworks) is complex research 
problem due to following run-time QoS prediction 
modelling uncertainties: 1) it is difficult to estimate 
activity-specific data flow behaviours in terms of 
data volume to be analysed, data velocity, data pro-
cessing time distributions, and I/O system behav-
iour and 2) without knowing the run-time changes 
to the flow  it is difficult to make decisions about 
the configuration of BigData programming frame-
works, cloud  and edge resources to be orchestrated 
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so that QoS targets across activities and workflow 
as whole are constantly achieved; 3) it is diffi-
cult to detect causes of QoS anomalies across the 
complex computing infrastructure due to hetero-
geneous data flow and QoS measures across mul-
tiple workflow activities and the availability, load, 
and throughput of cloud and/or edge resources can 
vary unpredictably due to failure or congestion of 
network links.  For example, in Figure 1, velocity 
of flooding related tweets can increase or decrease 
based on extent severity of the monsoon. Similarly, 
during rain gauge sensors can be instrumented to 
transmit information at much higher velocity and 
volume during monsoon.

Current State of the art
In this section, we will discuss the cur-
rent state of the art with respect to the 
four orchestration challenges in terms 
of workflow composition, mapping, 
QoS monitoring, and dynamic recon-
figurationto understand to what degree 
they are able to meet the new end-to-
end QoS and SLA requirements of Big-
Data workflow applications.

Workflow composition: Existing orchestation plat-
form such as Apache Oozie and Linkedin Azkaban 
supports composition of workflows, which can in-
clude multiple batch processing activities hence, 
does not suit the composition needs of complex 
workflows such as RTFM (see Figure 1) and others. 
On the other hand, platforms such as Apache YARN, 
Apache Mesos, Amazon IoT and Google Cloud 
Dataflow can support script-based composition of 
heterogeneous analytic activities on cloud datacen-
ter resources cannot deal with Edge resources. An-
other example of applying analytical techniques for 
composing BigData applications is the performance 
analysis of QoS models based on queuing networks 
and stochastic Petri nets as mentioned by Ardagna 
and colleagues.3 Other works aimed at analysing the 
Map Reduce paradigm using stochastic Petri nets as 
well as process algebras and Markov chains are.4,5 
Development like these tend to be greatly focused 
on a single programming paradigm, in this case Map 
Reduce (batch processing), and are therefore cannot 
be easily extended to multiple BigData programming 

frameworks and heterogeneous computing environ-
ments (Cloud + Edge). Workflow modelling and de-
ployment specification frameworks and languages 
such as TOSCA,2 OPENSTACK Heat, AWS Cloud 
Formation template and WS-CDL6 can assist in web 
services based workflows for software components 
and Cloud service. However, BigData workflows are 
quite complex as each analytical activity itself is a 
workflow in itself. Moreover, to support decision 
making process, workflow specification should inte-
grate contextual information, which can be dynami-
cally edited by decision maker. 

Workflow mapping: Existing BigData workflow or-
chestration platforms (Apache YARN, Mesos, and 

Apache Spark) are designed for homogeneous clus-
ters of cloud resources (agnostic to Edge resources). 
These orchestrators expect workflow administrators 
to determine the number and configuration of allo-
cated cloud resource types and provide appropriate 
software-level configuration parameters for each Big-
Data programing frameworks to which one or more 
analytic activities are mapped to. Branded price 
calculators are available from public cloud provid-
ers (Amazon, Azure) and academic projects (Clou-
drado), which allow comparison of cloud resource 
leasing costs. However, these calculators cannot rec-
ommend or compare configurations across BigData 
processing frameworks driven diverse QoS measures 
across workflow activities. In a narrow domain, re-
cent efforts7-10 have attempted to automate the con-
figuration selection of Hadoop frameworks (batch 
processing) over heterogeneous cloud-based virtual-
ized hardware resources. Multiple approaches11 have 
applied optimization  and performance measurement 
techniques for mapping web applications to cloud 
by selecting optimal virtual machine configuration 

After the deployment of BigData 
workflow applications it is important to 
monitor the run-time QoS and data flow 

across each activity in the graph.



26	 I EEE  CLO U D CO M P U T I N G� W W W.CO M P U T ER .O R G /CLO U D CO M P U T I N G

BLUE SKIES

(CPU Speed, RAM Size, cloud location, etc.) based 
on diverse QoS requirements (throughput, availability, 
cost, reputation, etc.). However, the configuration 
space, QoS, and SLA requirements for mapping 
workflow activities to BigData programming frame-
works and cloud/edge resources is fundamentally 
different from selecting virtual machine configura-
tion for web applications.

Workflow QoS monitoring: BigData Cluster-wide 
monitoring frameworks (Nagios, Ganglia, Apache 
Chukwa, Sematex, DMon, SequenceIQ) provide 
information about QoS metrics (cluster utilization, 
CPU utilization, memory utilization and nature of 
application: disk-, network-, or CPU-bound) of vir-
tualized resources that may belong to public or pri-
vate cloud. These monitoring frameworks12 do not 
support workflow activity-level QoS metrics and/
or SLAs, which is essential for BigData workflows 
where change in processing capability of one ana-
lytical activity can affect all the activities in the 
downstream.  In the public cloud computing space, 
monitoring frameworks (Amazon CloudWatch used 
by Amazon Elastic Map Reduce) typically monitor 
cloud (agnostic to Edge) VM resource as a black 
box, and so cannot monitor activity-level QoS met-
rics and/or data flow. Techniques presented by Al-
hamazani and colleagues13 and frameworks such as 
Monitis14 and Nimsoft15 can monitor QoS metrics 
of web applications hosted on the cloud. Complex 
event processing and content-based routing applica-
tions hosted on clouds. In summary, none of the ex-
isting QoS monitoring frameworks and techniques 
can (i) monitor and integrate data (workload input 
and performance metrics, disruptive events, SLAs 
at the platform level, SLAs at the infrastructure) 
across each activity of the workflow running on mul-
tiple BigData processing frameworks and underly-
ing hardware (Cloud + Edge) resources or (ii) detect 
root causes of workflow activity-level SLA violations 
and failures across the multiple BigData processing 
frameworks and hardware resources based on data 
flow and QoS metrics logs. 

Workflow dynamic reconfiguration: Current gen-
eration BigData orchestration platforms (YARN, 
Mesos, Amazon EMR) offer no guarantees about 
handling failures at workflow-level and/or resource 

level, nor can they automatically scale or de-scale 
the platform in response to changes in data volume, 
velocity or variety, or query types, which can affect 
the resource requirements of activities within a Big-
Data workflow. There are very few current research 
works that are trying to address the automatic scal-
ing of single BigData processing framework, batch 
processing16 and stream processing.17 Database 
community have mostly worked on optimising the 
query execution performance considering both in-
terleaved18,19 and parallel executions20,21 via both 
black-box approaches such online and offline ma-
chine learning and white-box approaches for ana-
lytical modelling of SQL and/or NoSQL BigData 
processing frameworks. Existing orchestrators in 
cloud community that can do online or dynamic 
reconfiguration have been built specifically for in-
teractive multi-tier web applications.4,5 However, 
most of the techniques utilised by them cannot be 
directly applied to predict data flow metrics (data 
volume, data velocity, stream operator processing 
time distributions, query types) or workflow activ-
ity-specific QoS metrics (batch processing response 
time, stream processing latency, data ingestion la-
tency, Tweet analysis accuracy) as BigData work-
flows are fundamentally different from multi-tier 
web applications. To make dynamic reconfiguration 
in the execution of BigData workflow applications, 
their run-time resource requirements and data flow 
changes needs to be predicted including any pos-
sible failure occurrence. These requirements need 
to be computed based on inter and intra dataflow 
of the workflows but also on the user’s contextual 
requirements.

s the concluding remark, current BigData 
analysis tools and workflow management or-

chestrators have to evolve to great degree before they 
can support the requirements of domain-specific 
BigData workflow applications. Most of these work-
flows applications are not just monolithic solution 
but a complex interaction of several BigData pro-
gramming frameworks, multiple data sources, and 
heterogeneous Cloud/Edge resources. Each of these 
applications need to orchestrated to support real 
time requirements of decision makers expressed in 
terms of Service Level Agreements.  
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No prior work has developed workload and re-
source performance models to enable contention-
free scaling and de-scaling of BigData processing 
frameworks and hardware (Cloud+Edge) resources. 
In other words, there is no support for new genera-
tionBigData workflows’ requirements particularly 
for time-sensitive ones (that is, no workflows, no dy-
namic orchestration of existing and new data analy-
sis steps, no (Cloud+Edge)-based implementation, 
and no dynamic tuning of such implementations to 
meet the  owner’s decision making requirements), or 
considers only solutions consisting of data analysis 
workflows that have predictable performance, which 
is assumed to be sufficient for its  owners (that is, ex-
isting research ignores the complexities of cloud and 
edge resource management for data analysis work-
flows and does not deal with meeting performance 
targets as determined by owner’s requirements). 

Therefore, it is essential that future research 
consider (1) BigData workflow analysis solutions 
based on data-driven workflows, (2) mapping such 
workflows to BigData programming frameworks and 
Cloud/Edge resources, and (3) manage such map-
pings and resources to meet specific owner’s require-
ments (or contexts). More specifically, the research 
community must aim to design new frameworks and 
novel platforms and techniques that enable deci-
sion making by allowing the orchestration of their 
execution in a seamless manner allowing dynamic 
resource reconfiguration at runtime.  
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