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ABSTRACT 

Appropriate performance evaluations of commercial Cloud services are crucial and 

beneficial for both customers and providers to understand the service runtime, while 

suitable experimental design and analysis would be vital for practical evaluation 

implementations. However, there seems to be a lack of effective methods for Cloud 

services performance evaluation. For example, in most of the existing evaluation studies, 

experimental factors (also called parameters or variables) were considered randomly 

and intuitively, experimental sample sizes were determined on the fly, and few 

experimental results were comprehensively analyzed. To address these issues, we suggest 

applying Design of Experiments (DOE) to Cloud services evaluation. To facilitate 

applying DOE techniques, this paper introduces an experimental factor framework and a 

set of DOE application scenarios. As such, new evaluators can explore and conveniently 

adapt our work to their own experiments for performance evaluation of commercial 

Cloud services. 
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INTRODUCTION 
Along with the boom in Cloud computing, an increasing number of commercial providers 

have started to offer public Cloud services (Li et al., 2010; Prodan & Ostermann, 2009). Different 

commercial Cloud services have been supplied with different terminologies, qualities, and cost 

models (Prodan & Ostermann, 2009). Consequently, performance evaluation of those services 

would be crucial and beneficial for both service customers and providers (Li et al., 2010). For 

example, proper performance evaluation of candidate Cloud services can help customers perform 

cost-benefit analysis and decision making for service selection, while it can also help providers 

improve their service qualities against competitors. Given the diversity of Cloud services and the 

uncertainty of service runtime, however, implementing appropriate performance evaluation of 

Cloud services is not easy. In particular, since Cloud services evaluation belongs to the domain of 

experimental computer science, suitable experimental design and analysis would be vital for 

practically evaluating Cloud services (Stantchev, 2009). 



Unfortunately, there seems to be a lack of effective methods for determining evaluation 

implementations in the Cloud computing domain. The current experimental design approaches 

vary significantly in the existing studies of Cloud services evaluation, and we have identified 

three main issues related to the current evaluation experiments. Firstly, the experimental sample 

sizes were determined arbitrarily, while inappropriate sample size could increase the probability 

of type II error in evaluation experiments (Montgomery, 2009). Secondly, most evaluators did not 

specify “experimental factors” when preparing evaluation experiments. In fact, identification of 

the relevant factors that may influence performance plays a prerequisite role in designing 

evaluation experiments (Jain, 1991). Thirdly, few Cloud services evaluation reports gave 

comprehensive analysis of experimental results. However, sound evaluation conclusions may 

require more objectivity by applying more statistical methods to experimental analysis 

(Montgomery, 2009). 

To deal with these identified issues, we decided to apply Design of Experiments (DOE) 

strategies to performance evaluation of commercial Cloud services. DOE is traditionally applied 

to agriculture, chemical, and process industries (Antony, 2003; Montgomery, 2009). Considering 

the natural relationship between experiment and evaluation, we believe that the various DOE 

techniques of experimental design and statistical analysis can also benefit Cloud services 

evaluation. Therefore, we investigated two main activities of applying DOE: (1) selection of input 

factors (parameters of Cloud resources and workload) and response variables (indicators of 

service runtime qualities); (2) choice of experimental design and statistical analysis based on the 

selected factors/variables. To facilitate experimental factor selection, we established a factor 

framework after collecting, clarifying and rationalizing the key concepts and their relationships in 

the existing Cloud performance evaluation studies. To help identify suitable experimental design 

and analysis techniques, we performed a series of case studies to demonstrate a set of DOE 

application scenarios. As such, new evaluators can explore and refer to our work to design their 

own experiments for performance evaluation of commercial Cloud services. 

Note that, as a continuation of our previous work (Li et al., 2012a, 2012b, 2012c, in press a, 

in press b), this study conventionally employed four constrains, as listed below. 

 We focused on the evaluation of only commercial Cloud services, rather than that of private 

or academic Cloud services, to make our effort closer to industry's needs. 

 We only investigated Performance evaluation of commercial Cloud services. The main 

reason is that not enough data about evaluating other service features could be found to 

support the generalization work. For example, there are little empirical studies in Security 

evaluation of commercial Cloud services due to the lack of quantitative metrics (Li et al., 

2012b). 

 We considered Infrastructure as a Service (IaaS) and Platform as a Service (PaaS) without 

considering Software as a Service (SaaS). Since SaaS with special functionalities is not used 

to further build individual business applications (Binnig et al., 2009), the evaluation of 

various SaaS instances could comprise an infinite and exclusive set of factors that would be 

out of the scope of this investigation. 

 We only explored empirical evaluation practices in academic publications. There is no 

doubt that informal descriptions of Cloud services evaluation in blogs and technical 

websites can also provide highly relevant information. However, on the one hand, it is 

impossible to explore and collect useful data from different study sources all at once. On the 

other hand, the published evaluation reports can be viewed as typical and peer-reviewed 

representatives of the existing ad hoc evaluation practices. 

The remainder of this paper is organized as follows. Next section summarizes the related 

work following the sequence of the identified issues. Section 3 briefly introduces the procedure of 

establishing the proposed factor framework, and specifies the tree-structured framework branch 

by branch. Two real cases are employed in Section 4 to demonstrate three typical DOE 



application scenarios when evaluating performance of commercial Cloud services. Conclusions 

and some future work are discussed in the last section. 

 

RELATED WORK 
Evaluation is crucial and inevitably required for computing paradigms involving 

virtualization (Wang et al., 2010a, 2010b, 2010c, 2011), and Cloud computing is such a typical 

case. Cloud services evaluation has been recognized as being in the field of experimental 

computer science (Stantchev, 2009). Therefore, designing suitable experiments would be crucial 

before practically evaluating Cloud services. In fact, most evaluators have emphasized 

experimental design or setup in their evaluation reports. Some general activities are widely 

highlighted, such as identifying service feature to be evaluated, selecting benchmarks and metrics, 

configuring experimental environment, etc. (Hill et al., 2010; Juve et al., 2009; Li et al., 2010; 

Palankar et al., 2008; Stantchev, 2009). Unfortunately, the current experimental design 

approaches vary significantly, and three main issues can be found in the existing Cloud services 

evaluation studies.  

First, the number of experimental replicates (sample sizes) was determined on the fly. It is 

clear that the repeat of experiments is vital particularly for observing variance of Cloud service 

features. Thus, Stantchev (2009) repeated an Amazon EC2 test six times on six consecutive days; 

Ostermann et al. (2009) chose 20 times when investigating the variability of Cloud resource 

acquisition and release; Palankar et al. (2008) downloaded data from Amazon S3 every 15 

minutes; Hill et al. (2010) evaluated TCP communication between two Azure VMs by 

transferring data every half hour for several days; Hill & Humphrey (2010) passed messages 

between EC2 instances 1000 trials for the smaller data points up to 32K and 10 trials for 4MB; 

while some other works emphasized that their experiments were repeated multiple times without 

specifying exact numbers (Juve et al., 2009; Li et al., 2010). However, all these evaluators did not 

justify how and why they set those experimental sample sizes.  

Second, there is a lack of systematic approaches to factor selection for experimental design. 

In most cases, evaluators identified factors either randomly or intuitively, and thus prepared 

evaluation experiments through an ad hoc way. For example, when it comes to the performance 

evaluation of Amazon EC2, different studies casually considered different EC2 instance factors in 

different experiments, such as VM type (Stantchev, 2009), number (Stantchev, 2009), 

geographical location (Iosup, Yigitbasi & Epema, 2010), operation system (OS) brand (Li et al., 

2010), and even CPU architecture (Iosup, Yigitbasi & Epema, 2010) and brand (Napper & 

Bientinesi, 2009), etc. In fact, to the best of our knowledge, none of the current Cloud 

performance evaluation studies has used “experimental factors” deliberately to design evaluation 

experiments and analyze the experimental results. 

Third, few Cloud services evaluation studies analyzed experimental results comprehensively. 

In fact, statistical methods have been strongly suggested for experimental analysis (Montgomery, 

2009). Although such methods do not directly prove any factor’s effect, the statistical analysis 

adds objectivity to drawing evaluation conclusions and potential decision-making process. 

Nevertheless, it seems that most evaluators intend to mainly report their observations by 

visualizing or listing the experimental results (Juve et al., 2009; Stantchev, 2009). Only when 

evaluating the variability of a particular Cloud service feature, some studies employed simple 

graphical tools like Box Plot (Ostermann et al., 2009) and Cumulative Fraction (Hill et al., 2010; 

Li et al., 2010; Palankar et al., 2008), while some others limited themselves to giving the 

minimum, maximum and average values (Baun & Kunze, 2009). The lack of comprehensive data 

analysis could be a result of the aforementioned ad hoc design that did not consider “experimental 

factors”. 

 



THE TREE-STRUCTURED FACTOR FRAMEWORK 
As mentioned previously, to facilitate experimental factor selection, we established an 

experimental factor framework based on our previous work. The whole work is mainly composed 

of four steps, as respectively specified below. 

 Conduct a systematic literature review (SLR). The foundation for establishing this factor 

framework is a systematic literature review (SLR) on evaluating commercial Cloud services 

(Li et al., in press b). As the main methodology applied for Evidence-Based Software 

Engineering (EBSE) (Dybå, Kitchenham & Jørgensen, 2005), SLR has been widely 

accepted as a standard and systematic approach to investigation of specific research 

questions by identifying, assessing, and analyzing published primary studies. Following a 

rigorous selection process in this SLR, as illustrated in Figure 1, we have identified 82 

Cloud services evaluation studies covering six commercial Cloud providers, such as 

Amazon, GoGrid, Google, IBM, Microsoft, and Rackspace, from a set of popular digital 

publication databases. The evaluation experiments in those identified 82 studies were 

thoroughly analyzed. In particular, the atomic experimental components, such as evaluation 

requirements, Cloud service features, metrics, benchmarks, experimental resources, and 

experimental operations, were respectively extracted and arranged. 

 

Figure 1. The study selection sequence in the SLR on evaluating commercial Cloud services. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Construct a taxonomy based on the SLR. During the analysis of these identified 

evaluation studies, we found that there were frequent reporting issues ranging from non-

standardized specifications to misleading explanations (Li et al., 2012a). Considering that 

those issues would inevitably obstruct comprehending and spoil drawing lessons from the 

existing evaluation work, we created a novel taxonomy to clarify and arrange the key 

concepts and terminology for Cloud services performance evaluation. The taxonomy is 

constructed along two dimensions: Performance Feature and Experiment. Moreover, the 

Performance Feature dimension is further split into Physical Property and Capacity parts, 

while the Experiment dimension is split into Environmental Scene and Operational Scene 

parts, as shown in Figure 2. The details of this taxonomy have been elaborated in (Li et al., 

2012a). 

 

 Build a conceptual model based on the taxonomy. Since a model is an abstract summary 

of some concrete object or activity in reality (Mellor, Clark & Futagami, 2003), the 

identification of real and concrete objects/activities plays a fundamental role in the 

corresponding modeling work. Given that the taxonomy has capsuled relevant key concepts 

and terminology, we further built a conceptual model of performance evaluation of 
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commercial Cloud services to rationalize different abstract-level classifiers and their 

relationships (Li et al., in press a). In detail, we used a three-layer structure to host different 

abstract elements for the performance evaluation conceptual model. To save space, here we 

only portray the most generalized part hosted in the top classifier layer, as shown in Figure 

3, which reflects the most generic reality of performance evaluation of a computing 

paradigm: essentially, performance evaluation can be considered as exploring the capacity 

of particular computing resources with particular workloads driven by a set of operations. 

 

 

Figure 2. Two-dimensional taxonomy of Cloud services performance evaluation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Conceptual model of Cloud services performance evaluation in the top classifier 

layer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Establish an experimental factor framework. In fact, the specific classifiers in the 

abovementioned conceptual model (Li et al., in press a) has implied the state-of-the-practice 
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of performance evaluation factors that people currently took into account in the Cloud 

Computing domain. According to different positions in the process of an evaluation 

experiment (Antony, 2003), the specific classifiers of Workload and Computing Resource 

indicate input process factors; the specific classifiers of Capacity suggest output process 

factors; while the Operation classifiers are used to adjust values of input process factors. 

Consequently, the experimental factors for performance evaluation of commercial Cloud 

services can be categorized into two input process groups (Workload and Computing 

Resource) and one output process group (Capacity). Then, we naturally portrayed the factor 

framework as a tree with three branches (Li et al., 2012c). Each of the following subsections 

describes one branch of the factor tree. 

 

Workload Factors 

Based on our previous work (Li et al., 2012a; Li et al., in press a), we found that a piece of 

workload used in performance evaluation could be described through one of three different 

concerns or a combination of them, namely Terminal, Activity, and Object. As such, we can 

adjust the workload by varying any of the concerns through different experimental operations. 

The individual workload factors are listed in Figure 4. 

 

Figure 4. The workload factors for experimental design. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Terminal 

In contrast with services to be evaluated in the Cloud, clients and particular Cloud resource 

(usually VM instances) issuing workload activities can be viewed as terminals. Correspondingly, 

the geographical location or number of both clients (Garfinker, 2007a) and VM instances (Hill et 

al., 2010) have been used to depict the relevant workload. Meanwhile, the terminal type can also 

be used as a workload factor. For example, the authors evaluated Cloud network latency by using 

client and EC2 instance respectively to issue pings (Baun & Kunze, 2009). In this case, the 

terminal type has the equal essence to the factor communication scope (cf. Subsection 

Communication). 
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Arrangement − 
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Activity 

The concept “activity” here describes an inherent property of workload, which is different 

from, but adjustable by, experimental operations. For example, disk I/O request as a type of 

activity can be adjusted by operations like the number or time of the requests. In fact, the number- 

and time-related variables, such as activity duration (Garfinker, 2007a), frequency (Chiu & 

Agrawal, 2010), number (Chiu & Agrawal, 2010), and timing (Garfinker, 2007b), have been 

widely considered as workload factors in practice. Furthermore, by taking a particular Cloud 

resource being evaluated as a reference, the factor activity direction can be depicted as input or 

output (Baun & Kunze, 2009). As for the activity sequence in a workload, the arrangement 

generates either sequential (Baun & Kunze, 2009) or parallel (Hill et al., 2010) activity flows. 

 

Object 

In a workload for Cloud services performance evaluation, objects refer to the targets of the 

abovementioned activities. The concrete objects can be individual messages (Hill & Humphrey, 

2009), data files (Hill et al., 2010), and transactional jobs/tasks (Deelman et al., 2008) in fine 

grain, while they can also be coarse-grained workflows or problems (Deelman et al., 2008). 

Therefore, the object number and object size/complexity are two typical workload factors in the 

existing evaluation studies. Note that we do not consider object location as a workload factor, 

because the locations of objects are usually hosted and determined by computing resources (cf. 

Subsection Computing Resource Factors). In particular, a workload may have multiple object 

size/complexity-related factors in one experiment. For example, a set of parameters of HPL 

benchmark, such as the block size and process grid size, should be tuned simultaneously when 

evaluating Amazon EC2 (Bientinesi, Iakymchuk & Napper, 2010). 

 

Figure 5. The computing resource factors for experimental design. 
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Computing Resource Factors 

According to the physical properties in the performance feature of commercial Cloud 

services (Li et al., 2012a), the Cloud Computing resource can be consumed by one or more of 

four basic styles: Communication, Computation, Memory (Cache), and Storage. In particular, the 

VM Instance resource is an integration of all the four basic types of computing resources. Overall, 

the computing resource factors can be organized as shown in Figure 5. 

 

Communication 

As explained in (Li et al., 2012a), Communication becomes a special Cloud Computing 

resource because commercial Cloud services are employed inevitably through Internet/Ethernet. 

As such, the Ethernet I/O Index is usually pre-supplied as a service-level agreement (SLA) by 

service providers. In practice, the scope and level of communication have been frequently 

emphasized in the performance evaluation studies. Therefore, we can summarize two practical 

factors: The factor Communication Scope considers intra-Cloud and wide-area data transferring 

respectively (Li et al., 2010), while the Communication Level distinguishes between IP-level and 

MPI-message-level networking (He et al., 2010). 

 

Computation 

When evaluating PaaS, the Computation resource is usually regarded as a black box (Iosup, 

Yigitbasi & Epema, 2010). Whereas, for IaaS, the practices of Computation evaluation of Cloud 

services have taken into account Core Number (Bientinesi, Iakymchuk & Napper, 2010), Elastic 

Compute Unit (ECU) Number, Thread Number (Baun & Kunze, 2009), and a set of CPU 

characteristics. Note that, compared to physical CPU core and thread, ECU is a logical concept 

introduced by Amazon, which is defined as the CPU power of a 1.0-1.2 GHz 2007 Opteron or 

Xeon processor (Ostermann et al., 2009). When it comes to CPU characteristics, the Architecture 

(e.g. 32 bit vs. 64 bit) (Iosup, Yigitbasi & Epema, 2010) and Brand (e.g. AMD Opteron vs. Intel 

Xeon) (Napper & Bientinesi, 2009) have been respectively considered in evaluation experiments. 

Processors with the same brand can be further distinguished between different CPU Models (e.g. 

Intel Xeon E5430 vs. Intel Xeon X5550) (Bientinesi, Iakymchuk & Napper, 2010). In particular, 

CPU Frequency appears also as an SLA of Cloud computation resources. 

 

Memory (Cache) 

Since Memory/Cache could closely work with the Computation and Storage resources in 

computing jobs, it is hard to exactly distinguish the affect to performance brought by 

Memory/Cache. Therefore, not many dedicated Cloud memory/cache evaluation studies can be 

found from the literature. In addition to the SLA Memory Size, interestingly, Physical Location 

and Size of cache (e.g. L1=64KB vs. L2=1MB in Amazon m1.* instances) (Ostermann et al., 

2009) have attracted attentions when analyzing the memory hierarchy. However, in Ostermann et 

al. (2009), different values of these factors were actually revealed by performance evaluation 

rather than used for experimental design. 

 

Storage 

As mentioned in Li et al. (2012a), Storage can be either the only functionality or a 

component functionality of a Cloud service, for example Amazon S3 vs. EC2. Therefore, it can 

be often seen that disk-related storage evaluation also adopted experimental factors of evaluating 



other relevant resources like VM instances (cf. Subsection VM Instance). Similarly, the 

predefined Storage Size acts as an SLA, while a dedicated factor of evaluating Storage is the 

Geographical Location. Different geographical locations of Storage resources can result either 

from different service data centers (e.g. S3 vs. S3-Europe) (Palankar et al., 2008) or from 

different storing mechanisms (e.g. local disk vs. remote NFS drive) (Sobel et al., 2008). In 

addition, although not all of the public Cloud providers specified the definitions, the Storage 

resource has been distinguished among three types of offers: Blob, Table and Queue (Li et al., 

2010). Note that different Storage Types correspond to different sets of data-access activities, as 

described in Li et al. (2012b). 

 

VM Instance 

VM Instance is one of the most popular computing resource styles in the commercial Cloud 

service market. The widely considered factors in current VM Instance evaluation experiments are 

Geographical Location, Instance Number, and VM Type (Bientinesi, Iakymchuk & Napper, 2010; 

Hill & Humphrey, 2009; Hill et al., 2010; Iosup, Yigitbasi & Epema, 2010; Li et al., 2010; 

Ostermann et al., 2009; Stantchev, 2009). The VM Type of a particular instance naturally reflects 

its corresponding provider, as demonstrated in (Li et al., 2010). Moreover, although not common, 

the OS Brand (e.g. Linux vs. Windows) (Li et al., 2010) and Physical Location (Dejun, Pierre & 

Chi, 2009) also emerged as experimental factors in some evaluation studies. Note that the 

physical location of a VM instance indicates the instance's un-virtualized environment, which is 

not controllable by evaluators in evaluation experiments (Dejun, Pierre & Chi, 2009). In 

particular, recall that a VM Instance integrates above four basic types of computing resources. 

We can therefore find that some factors of evaluating previous resources were also used in the 

evaluation of VM Instances, for example the CPU Architecture and Core Number (Bientinesi, 

Iakymchuk & Napper, 2010; Ostermann et al., 2009). 

 

Figure 6. The capacity factors for experimental design. 
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As discussed about the generic reality of performance evaluation (cf. Figure 3), it is clear 

that the capacities of a Cloud computing resource are intangible until they are measured. 

Meanwhile, the measurement has to be realized by using measurable and quantitative metrics (Le 

Boudec, 2011). Therefore, we can treat the values of relevant metrics as tangible representations 

of the evaluated capacities. Moreover, a particular capacity of a commercial Cloud service may 

be reflected by a set of relevant metrics, and each metric provides a different lens into the 

capacity as a whole (Fortier & Michel, 2003). For example, Benchmark Transactional Job Delay 

(Luckow & Jha, 2010) and Benchmark Delay (Juve et al., 2009) are both Latency metrics: the 

former is from the individual perspective, while the latter from the global perspective. As such, 

we further regard relevant metrics as possible output process factors (Antony, 2003) when 

measuring a particular Cloud service capacity, and every single output process factor can be used 

as a candidate response (Antony, 2003) in the experimental design. Since we have clarified seven 

different Cloud service capacities (Li et al., 2012a), i.e. Data Throughput, Latency, Transaction 

Speed, Availability, Reliability, Scalability, and Variability, the possible capacity factors (metrics) 

can be correspondingly categorized as shown in Figure 6. Due to the limit of space, it is 

impossible and unnecessary to exhaustively list all the metrics in this paper. Some sample metrics 

for evaluating Memory (Cache) are shown in Table 1. In fact, the de facto metrics for 

performance evaluation of commercial Cloud services have been collected and summarized in our 

previous work (Li et al., 2012b).  

 
Table 1. Sample metrics for evaluating Memory (Cache) (Li et al., 2012b). 

 
Capacity Metrics Benchmark 

Transaction 

Speed 

Random Memory Update Rate (MUP/s, 

GUP/s) 
HPCC: RandomAccess 

Latency 
Mean Hit Time (s) Land Elevation Change App 

Memcache Get/Put/Response Time (ms) Operate 1Byte/ 1MB data 

Data 

Throughput 
Memory bit/Byte Speed (MB/s, GM/s) 

CacheBench 

HPCC: PTRANS 

HPCC: STREAM 

 

 

THREE TYPICAL SCENARIOS OF APPLYING DOE TECHNIQUES 
Recall that relevant factors play a prerequisite role in designing evaluation experiments. 

Benefitting from the pre-established factor framework, evaluators may employ suitable DOE 

techniques for experimental design and analysis when evaluating Cloud services. Here we use 

two cases to preliminarily explain how to apply DOE to Cloud services evaluation. First, we 
replicate a study of Google AppEngine evaluation (Iosup, Yigitbasi & Epema, 2010) to 

demonstrate the usage of two techniques for determining sample size and analyzing variance. 

Second, we adopt an existing study of Amazon EC2 disk I/O evaluation to illustrate the 

application of 2
3
 Factorial Design. 

 

Sample Size Determination 

Determining sample size is critical in any experimental design problem (Montgomery, 2009). 

Unfortunately, most of the existing Cloud services evaluation studies did not justify how the 

number of experimental replicates was decided. In fact, the statistical approach in DOE can be 

used to facilitate sample size determination. We demonstrate this by replicating a straightforward 

study of Google AppEngine evaluation. 

The overall objective of the original study (Iosup, Yigitbasi & Epema, 2010) is to evaluate 

the computation performance of the Google AppEngine Python runtime. In particular, the study 

investigated how variable the Google AppEngine’s performance was during different time 



periods. Therefore, by exploring the experimental factor framework, we can identify that the only 

factor considered in the original evaluation work is Timing (cf. Figure 4). Although there are 

other potentially useful factors like Workload Size, we deliberately ignored them to make our 

study comparable with the original one. Similarly, following the original study, we directly 

selected the metric Benchmark Runtime to measure the computation performance of Google 

AppEngine. With regard to the benchmark, we coded a Python program to recursively calculate 

the 27th Fibonacci number, as implemented in (Iosup, Yigitbasi & Epema, 2010). 

Furthermore, to make this demonstration simple and clear, we decided to choose seven 

consecutive days as the experimental period. In other words, we treated different dates as 

different levels of the factor Timing. As such, the evaluation requirement can be formally 

hypothesized as Equation (1) to test the equality of seven computation performance means, where 

µi refers to the Fibonacci calculation mean in the ith day.  

 















)7,..2,1,(

:

...:

1

7210

ji  and ji

j) (i, pair one least at for H

H

ji 



    (1) 

 

As suggested in (Montgomery, 2009), we performed a set of random and pilot Fibonacci 

calculations within Google AppEngine to estimate its performance standard deviation, and then 

used the Operating Characteristic (OC) Curves to find a suitable number of replicates for 

everyday. An OC curve is essentially “a plot of the type II error probability of a statistical test for 

a particular sample size versus a parameter that reflects the extent to which the null hypothesis is 

false” (Montgomery, 2009). The type II error is the failure to reject a false null hypothesis, and 

thus the type II error probability can be defined as Equation (2). The null hypothesis H0 in this 

case is that the seven performance means are equal to each other.  

 

)(

)(

false is H | H reject to FailP

error II typeP

00


    (2) 

 

Recall that the value of standard deviation must be specified before using OC curves 

(Montgomery, 2009). Given the estimated standard deviation is 34ms by pilot Fibonacci 

calculations, we finally decided to run 123 replicates per day (or replicate once per 720 seconds) 

to satisfy a target power (1 − β) of at least 0.9. To save space, here we replace the OC curve 

illustration with the Minitab output of finding sample sizes, as shown in Figure 7. 

 

Figure 7. Sample size for performing Google AppEngine evaluation (by Minitab). 

Power and Sample Size  
 
One-way ANOVA 

 

Alpha = 0.01  Assumed standard deviation = 34 

 

Factors: 1  Number of levels: 7 

 

 

   Maximum  Sample  Target 

Difference    Size   Power  Actual Power 

        21     123     0.9      0.900852 

 

The sample size is for each level. 

 



Analysis of Variance 

We continue the previous case study to demonstrate the one-factor DOE technique for 

analyzing the variance of Google AppEngine performance. Given the determined sample size, the 

evaluation experiments were correspondingly deployed and implemented. Several typical indices 

of the experimental result are shown in Table 2, while the specific result can be visualized as 

shown in Figure 8. 

 
Table 2. Experimental result of the 27th Fibonacci calculation with Google AppEngine Python 

runtime 

 
Date Average Minimum Maximum Standard  

Deviation 

Sept. 1 197.97ms 152.36ms 329.62ms 35.07ms 

Sept. 2 194.65ms 151.65ms 311.38ms 30.43ms 

Sept. 3 197.83ms 150.57ms 308.64ms 28.81ms 

Sept. 4 199.95ms 151.13ms 329.29ms 34.82ms 

Sept. 5 208.44ms 155.14ms 318.45ms 38.38ms 

Sept. 6 226.39ms 153.91ms 313.66ms 45.48ms 

Sept. 7 220.79ms 148.15ms 366.49ms 44.18ms 

Total 206.58ms 148.15ms 366.49ms 38.84ms 

 

 

Figure 8. Google AppEngine computation performance during seven days. 

 
 

Table 2 and Figure 8 intuitively show that Google AppEngine takes 200 ± 50ms in general to 

calculate the 27th Fibonacci number. Moreover, the computation performance peak of Google 

AppEngine is relatively stable (around 150ms for the 27th Fibonacci calculation) everyday, while 

the worst-case calculation time varies largely. However, such observations do not advise whether 

or not we can expect a stable mean of the computation performance of Google AppEngine. 

Therefore, we employed Tukey’s Test (Montgomery, 2009) to perform all pair-wise mean 

comparisons. Given the significance level α, the procedure of Tukey’s Test constructs confidence 

intervals on the differences in all pairs of means, and the simultaneous confidence level is 100(1 

− α) percent for those intervals. In this case, we directly show the output of Tukey’s Test by using 

Minitab (cf. Figure 9). 

 

 

 



 

 

 

 

Figure 9. Grouping information in Tukey’s analysis result (by Minitab). 

One-way ANOVA: Runtime versus Date 
 

Grouping Information Using Tukey Method 

 

Date       N    Mean  Grouping 

Sept. 6  123  226.39  A 

Sept. 7  123  220.79  A B 

Sept. 5  123  208.44    B C 

Sept. 4  123  199.95      C 

Sept. 1  123  197.97      C 

Sept. 3  123  197.83      C 

Sept. 2  123  194.65      C 

 

Means that do not share a letter are significantly different. 

 

It can be seen that the seven days’ Fibonacci calculation means are divided into three groups, 

which statistically confirms that it is impossible to achieve a stable performance when using 

Google AppEngine at different period of time. However, interestingly, Group B can be viewed as 

a linkage between Group A and C. We thus claim that, although not absolutely stable, the 

performance mean of Google AppEngine may fluctuate mildly. 

 

2
3
 Factorial Design 

In general cases of Cloud services evaluation, one experiment could take into account more 

than one factor related to both the service to be evaluated and the workload. Suppose there is a 

requirement of evaluating Amazon EC2 with respect to its disk I/O. Given the factor framework 

proposed in this paper, we can quickly and conveniently lookup and choose experimental factors 

according to the evaluation requirement. To simplify the demonstration, here we constrain the 

terminal to be clients, while only consider the direction of disk I/O and data size to be read/write 

in workload factors, and only consider the EC2 VM type in computing resource factors. As for 

the capacity factors, we can employ multiple suitable metrics in this evaluation, for example disk 

I/O latency and data throughput. However, since only one metric should be determined as the 

response in an experimental design (Antony, 2003), we choose the disk data throughput in this 

case. Thus, we have identified active direction, object size and VM type as factors, while data 

throughput as response in the framework for designing experiments. In particular, we use two-

level settings for the three factors: the value of active direction can be Write or Read; object size 

can be Char or Block; and VM type only covers M1.small and M1.large. In addition, we use 

“MB/s” as the unit of data throughput. 

Since only three factors are considered, we can simply adopt the most straightforward design 

technique, namely Full-factorial Design (Antony, 2003), for this demonstration. This design 

technique adjusts one factor at a time, which results in an experimental matrix comprising eight 

trials, as shown in Matrix (1). For conciseness, we further assign aliases to those experimental 

factors, as listed below. Note that the sequence of the experimental trials has been randomized to 

reduce possible noises or biases (Antony, 2003) during the designing process.  

 A: Activity Direction (Write vs. Read). 

 B: Object Size (Char vs. Block). 

 C: VM Type (M1.small vs. M1.large). 

 Response: Data Throughput (MB/s). 



 



































?M1.largeBlockWrite8

?M1.largeCharWrite7

?M1.smallBlockRead6

?M1.largeBlockRead5

?smallMCharRead4

?smallMCharWrite3

?M1.largeCharRead2

?M1.smallBlockWrite1

ResponseCBAtrial

.1

.1

     (1) 

 

Following the experimental matrix, we can implement evaluation experiments trial by trial, 

and fill the Response column with experimental results. For our convenience, here we directly 

employ the evaluation results reported in (Iosup et al., 2011), as listed in Matrix (2). 

 



































 MB/s63.2M1.largeBlockWrite8

 MB/s35.9M1.largeCharWrite7

 MB/s60.2M1.smallBlockRead6

 MB/s64.3M1.largeBlockRead5

 MB/s22.3smallMCharRead4

 MB/s25.9smallMCharWrite3

 MB/s50.9M1.largeCharRead2

 MB/s73.5M1.smallBlockWrite1

ResponseCBAtrial

.1

.1

     (2) 

 

Finally, different analytical techniques can be employed to reveal more comprehensive 

meanings of experimental results (Antony, 2003) for commercial Cloud services. For example, in 

this case, we can further investigate the significances of these factors to analyze their different 

influences on the disk I/O performance. In detail, by setting the significance level α as 0.05 

(Jackson, 2011), we draw a Pareto plot to detect the factor and interaction effects that are 

important to the process of reading/writing data from/to EC2 disks, as shown in Figure 10.  

 

Figure 10. The Pareto plot of factor effects. 
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Given a particular significance level, Pareto plot displays a red reference line besides the 

effect values. Any effect that extends past the reference line is potentially important (Antony, 

2003). In Figure 10, none of the factor or interaction effects is beyond the reference line, which 

implies that none of the factors or interactions significantly influences the EC2 disk I/O 

performance. Therefore, we can claim that EC2 disk I/O is statistically stable with respect to 

those three factors. However, Factor B (Data Size to be read/written) has relatively significant 

influence on the performance of EC2 disk I/O. Since the throughput of small-size data (Char) is 

much lower than that of large-size data (Block), we can conclude that there is a bottleneck of 

transaction overhead when reading/writing small size of data. On the contrary, there is little I/O 

performance effect when switching activity directions, which means the disk I/O of EC2 is 

particularly stable no matter reading or writing the same size of data. 

 

In particular, through the above demonstrations, we show that the proposed factor 

framework offers a concrete and rational foundation for implementing performance evaluation of 

commercial Cloud services. When evaluating Cloud services, there is no doubt that the 

techniques of experimental design and analysis can still be applied by using intuitively selected 

factors. Nevertheless, by referring to the existing evaluation experiences, evaluators can 

conveniently identify suitable experimental factors while excluding the others, which essentially 

suggest a systematic rather than ad hoc decision making process. 

 

CONCLUSIONS AND FUTURE WORK 

Cloud Computing has attracted a tremendous amount of attention from both 

customers and providers in the current computing industry, which leads to a competitive 

market of commercial Cloud services. As a result, different Cloud infrastructures and 

services may be offered with different terminology, definitions, and goals (Prodan & 

Ostermann, 2009). On the one hand, different Cloud providers have their own 

idiosyncratic characteristics when developing services (Li et al., 2010). On the other hand, 

even the same provider can supply different Cloud services with comparable 

functionalities for different purposes. For example, Amazon has provided several options 

of storage service, such as EC2, EBS, and S3 (Chiu & Agrawal, 2010). Consequently, 

performance evaluation of candidate services would be crucial and beneficial for many 

purposes ranging from cost-benefit analysis to service improvement (Li et al., 2010). 

When it comes to performance evaluation of a computing system, proper 

experimental design and analysis should be performed with respect to a set of factors that 

may influence the system's performance (Jain, 1991; Montgomery, 2009). In the Cloud 

Computing domain, however, most of the evaluators intuitively employed experimental 

factors and implemented ad hoc experiments with few comprehensive analyses for 

evaluating performance of commercial Cloud services. Thus, we suggest applying DOE 

to systematically instruct Cloud services evaluation. In particular, considering factor 

identification plays a prerequisite role in experimental design, we collected experimental 

factors that people currently took into account in Cloud services performance evaluation, 

and arranged them into a tree-structured framework. 

The main contribution of this work is twofold. On the one hand, the established 

factor framework supplies a dictionary-like approach to selecting experimental factors for 

Cloud services performance evaluation. Benefitting from the framework, evaluators can 

identify necessary factors in a concrete space instead of on the fly. Note that the 



experimental factor framework is supposed to supplement, but not replace, the expert 

judgment for experimental factor identification, which would be particularly helpful for 

Cloud services evaluation when there is a lack of a bunch of experts. On the other hand, 

based on the experimental factor framework, we initially suggested a series of DOE 

techniques for sample size determination, single-factor experimental analysis, and three-

factor experimental design. Thus, new evaluators can conveniently refer to our work and adapt 

these DOE techniques to their own evaluation scenarios.  
The future work of this research will be unfolded along two directions. First, we will 

gradually collect feedback from external experts to supplement this factor framework. As 

explained previously, Cloud Computing is still maturing and relatively chaotic (Stokes, 

2011), it is therefore impossible to exhaustively identify the relevant experimental factors 

all at once. Through smooth expansion, we can make this factor framework increasingly 

suit the more general area of evaluation of Cloud Computing. Second, given the currently 

available experimental factors, we plan to further introduce and adapt suitable DOE 

techniques to evaluating commercial Cloud services. As demonstrated in Section 4, the 

adapted DOE techniques together with the experimental factor framework would 

effectively support systematic implementations of Cloud services evaluation. 
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