
Applying Design of Experiments (DOE)

to Performance Evaluation of

Commercial Cloud Services

Zheng Li*, Australian National University and NICTA, Australia

Liam O’Brien, Geoscience Australia, Australia

He Zhang, University of East London, UK

Rajiv Ranjan, CSIRO ICT Center, Australia

ABSTRACT

Appropriate performance evaluations of commercial Cloud services are crucial and

beneficial for both customers and providers to understand the service runtime, while

suitable experimental design and analysis would be vital for practical evaluation

implementations. However, there seems to be a lack of effective methods for Cloud

services performance evaluation. For example, in most of the existing evaluation studies,

experimental factors (also called parameters or variables) were considered randomly

and intuitively, experimental sample sizes were determined on the fly, and few

experimental results were comprehensively analyzed. To address these issues, we suggest

applying Design of Experiments (DOE) to Cloud services evaluation. To facilitate

applying DOE techniques, this paper introduces an experimental factor framework and a

set of DOE application scenarios. As such, new evaluators can explore and conveniently

adapt our work to their own experiments for performance evaluation of commercial

Cloud services.

Keywords: Cloud computing, commercial Cloud services, performance evaluation,

experimental design, factor framework

INTRODUCTION
Along with the boom in Cloud computing, an increasing number of commercial providers

have started to offer public Cloud services (Li et al., 2010; Prodan & Ostermann, 2009). Different

commercial Cloud services have been supplied with different terminologies, qualities, and cost

models (Prodan & Ostermann, 2009). Consequently, performance evaluation of those services

would be crucial and beneficial for both service customers and providers (Li et al., 2010). For

example, proper performance evaluation of candidate Cloud services can help customers perform

cost-benefit analysis and decision making for service selection, while it can also help providers

improve their service qualities against competitors. Given the diversity of Cloud services and the

uncertainty of service runtime, however, implementing appropriate performance evaluation of

Cloud services is not easy. In particular, since Cloud services evaluation belongs to the domain of

experimental computer science, suitable experimental design and analysis would be vital for

practically evaluating Cloud services (Stantchev, 2009).

Unfortunately, there seems to be a lack of effective methods for determining evaluation

implementations in the Cloud computing domain. The current experimental design approaches

vary significantly in the existing studies of Cloud services evaluation, and we have identified

three main issues related to the current evaluation experiments. Firstly, the experimental sample

sizes were determined arbitrarily, while inappropriate sample size could increase the probability

of type II error in evaluation experiments (Montgomery, 2009). Secondly, most evaluators did not

specify “experimental factors” when preparing evaluation experiments. In fact, identification of

the relevant factors that may influence performance plays a prerequisite role in designing

evaluation experiments (Jain, 1991). Thirdly, few Cloud services evaluation reports gave

comprehensive analysis of experimental results. However, sound evaluation conclusions may

require more objectivity by applying more statistical methods to experimental analysis

(Montgomery, 2009).

To deal with these identified issues, we decided to apply Design of Experiments (DOE)

strategies to performance evaluation of commercial Cloud services. DOE is traditionally applied

to agriculture, chemical, and process industries (Antony, 2003; Montgomery, 2009). Considering

the natural relationship between experiment and evaluation, we believe that the various DOE

techniques of experimental design and statistical analysis can also benefit Cloud services

evaluation. Therefore, we investigated two main activities of applying DOE: (1) selection of input

factors (parameters of Cloud resources and workload) and response variables (indicators of

service runtime qualities); (2) choice of experimental design and statistical analysis based on the

selected factors/variables. To facilitate experimental factor selection, we established a factor

framework after collecting, clarifying and rationalizing the key concepts and their relationships in

the existing Cloud performance evaluation studies. To help identify suitable experimental design

and analysis techniques, we performed a series of case studies to demonstrate a set of DOE

application scenarios. As such, new evaluators can explore and refer to our work to design their

own experiments for performance evaluation of commercial Cloud services.

Note that, as a continuation of our previous work (Li et al., 2012a, 2012b, 2012c, in press a,

in press b), this study conventionally employed four constrains, as listed below.

 We focused on the evaluation of only commercial Cloud services, rather than that of private

or academic Cloud services, to make our effort closer to industry's needs.

 We only investigated Performance evaluation of commercial Cloud services. The main

reason is that not enough data about evaluating other service features could be found to

support the generalization work. For example, there are little empirical studies in Security

evaluation of commercial Cloud services due to the lack of quantitative metrics (Li et al.,

2012b).

 We considered Infrastructure as a Service (IaaS) and Platform as a Service (PaaS) without

considering Software as a Service (SaaS). Since SaaS with special functionalities is not used

to further build individual business applications (Binnig et al., 2009), the evaluation of

various SaaS instances could comprise an infinite and exclusive set of factors that would be

out of the scope of this investigation.

 We only explored empirical evaluation practices in academic publications. There is no

doubt that informal descriptions of Cloud services evaluation in blogs and technical

websites can also provide highly relevant information. However, on the one hand, it is

impossible to explore and collect useful data from different study sources all at once. On the

other hand, the published evaluation reports can be viewed as typical and peer-reviewed

representatives of the existing ad hoc evaluation practices.

The remainder of this paper is organized as follows. Next section summarizes the related

work following the sequence of the identified issues. Section 3 briefly introduces the procedure of

establishing the proposed factor framework, and specifies the tree-structured framework branch

by branch. Two real cases are employed in Section 4 to demonstrate three typical DOE

application scenarios when evaluating performance of commercial Cloud services. Conclusions

and some future work are discussed in the last section.

RELATED WORK
Evaluation is crucial and inevitably required for computing paradigms involving

virtualization (Wang et al., 2010a, 2010b, 2010c, 2011), and Cloud computing is such a typical

case. Cloud services evaluation has been recognized as being in the field of experimental

computer science (Stantchev, 2009). Therefore, designing suitable experiments would be crucial

before practically evaluating Cloud services. In fact, most evaluators have emphasized

experimental design or setup in their evaluation reports. Some general activities are widely

highlighted, such as identifying service feature to be evaluated, selecting benchmarks and metrics,

configuring experimental environment, etc. (Hill et al., 2010; Juve et al., 2009; Li et al., 2010;

Palankar et al., 2008; Stantchev, 2009). Unfortunately, the current experimental design

approaches vary significantly, and three main issues can be found in the existing Cloud services

evaluation studies.

First, the number of experimental replicates (sample sizes) was determined on the fly. It is

clear that the repeat of experiments is vital particularly for observing variance of Cloud service

features. Thus, Stantchev (2009) repeated an Amazon EC2 test six times on six consecutive days;

Ostermann et al. (2009) chose 20 times when investigating the variability of Cloud resource

acquisition and release; Palankar et al. (2008) downloaded data from Amazon S3 every 15

minutes; Hill et al. (2010) evaluated TCP communication between two Azure VMs by

transferring data every half hour for several days; Hill & Humphrey (2010) passed messages

between EC2 instances 1000 trials for the smaller data points up to 32K and 10 trials for 4MB;

while some other works emphasized that their experiments were repeated multiple times without

specifying exact numbers (Juve et al., 2009; Li et al., 2010). However, all these evaluators did not

justify how and why they set those experimental sample sizes.

Second, there is a lack of systematic approaches to factor selection for experimental design.

In most cases, evaluators identified factors either randomly or intuitively, and thus prepared

evaluation experiments through an ad hoc way. For example, when it comes to the performance

evaluation of Amazon EC2, different studies casually considered different EC2 instance factors in

different experiments, such as VM type (Stantchev, 2009), number (Stantchev, 2009),

geographical location (Iosup, Yigitbasi & Epema, 2010), operation system (OS) brand (Li et al.,

2010), and even CPU architecture (Iosup, Yigitbasi & Epema, 2010) and brand (Napper &

Bientinesi, 2009), etc. In fact, to the best of our knowledge, none of the current Cloud

performance evaluation studies has used “experimental factors” deliberately to design evaluation

experiments and analyze the experimental results.

Third, few Cloud services evaluation studies analyzed experimental results comprehensively.

In fact, statistical methods have been strongly suggested for experimental analysis (Montgomery,

2009). Although such methods do not directly prove any factor’s effect, the statistical analysis

adds objectivity to drawing evaluation conclusions and potential decision-making process.

Nevertheless, it seems that most evaluators intend to mainly report their observations by

visualizing or listing the experimental results (Juve et al., 2009; Stantchev, 2009). Only when

evaluating the variability of a particular Cloud service feature, some studies employed simple

graphical tools like Box Plot (Ostermann et al., 2009) and Cumulative Fraction (Hill et al., 2010;

Li et al., 2010; Palankar et al., 2008), while some others limited themselves to giving the

minimum, maximum and average values (Baun & Kunze, 2009). The lack of comprehensive data

analysis could be a result of the aforementioned ad hoc design that did not consider “experimental

factors”.

THE TREE-STRUCTURED FACTOR FRAMEWORK
As mentioned previously, to facilitate experimental factor selection, we established an

experimental factor framework based on our previous work. The whole work is mainly composed

of four steps, as respectively specified below.

 Conduct a systematic literature review (SLR). The foundation for establishing this factor

framework is a systematic literature review (SLR) on evaluating commercial Cloud services

(Li et al., in press b). As the main methodology applied for Evidence-Based Software

Engineering (EBSE) (Dybå, Kitchenham & Jørgensen, 2005), SLR has been widely

accepted as a standard and systematic approach to investigation of specific research

questions by identifying, assessing, and analyzing published primary studies. Following a

rigorous selection process in this SLR, as illustrated in Figure 1, we have identified 82

Cloud services evaluation studies covering six commercial Cloud providers, such as

Amazon, GoGrid, Google, IBM, Microsoft, and Rackspace, from a set of popular digital

publication databases. The evaluation experiments in those identified 82 studies were

thoroughly analyzed. In particular, the atomic experimental components, such as evaluation

requirements, Cloud service features, metrics, benchmarks, experimental resources, and

experimental operations, were respectively extracted and arranged.

Figure 1. The study selection sequence in the SLR on evaluating commercial Cloud services.

 Construct a taxonomy based on the SLR. During the analysis of these identified

evaluation studies, we found that there were frequent reporting issues ranging from non-

standardized specifications to misleading explanations (Li et al., 2012a). Considering that

those issues would inevitably obstruct comprehending and spoil drawing lessons from the

existing evaluation work, we created a novel taxonomy to clarify and arrange the key

concepts and terminology for Cloud services performance evaluation. The taxonomy is

constructed along two dimensions: Performance Feature and Experiment. Moreover, the

Performance Feature dimension is further split into Physical Property and Capacity parts,

while the Experiment dimension is split into Environmental Scene and Operational Scene

parts, as shown in Figure 2. The details of this taxonomy have been elaborated in (Li et al.,

2012a).

 Build a conceptual model based on the taxonomy. Since a model is an abstract summary

of some concrete object or activity in reality (Mellor, Clark & Futagami, 2003), the

identification of real and concrete objects/activities plays a fundamental role in the

corresponding modeling work. Given that the taxonomy has capsuled relevant key concepts

and terminology, we further built a conceptual model of performance evaluation of

Quickly

Scanning

Entirely Reading

& Team Meeting

Reference

Snowballing

Determine relevant studies

from initially selected

publications.

Further identify studies

from references.

Snowballed publications.

Determine relevant

studies from snowballed

publications.

Finally selected

relevant studies.

commercial Cloud services to rationalize different abstract-level classifiers and their

relationships (Li et al., in press a). In detail, we used a three-layer structure to host different

abstract elements for the performance evaluation conceptual model. To save space, here we

only portray the most generalized part hosted in the top classifier layer, as shown in Figure

3, which reflects the most generic reality of performance evaluation of a computing

paradigm: essentially, performance evaluation can be considered as exploring the capacity

of particular computing resources with particular workloads driven by a set of operations.

Figure 2. Two-dimensional taxonomy of Cloud services performance evaluation.

Figure 3. Conceptual model of Cloud services performance evaluation in the top classifier

layer.

 Establish an experimental factor framework. In fact, the specific classifiers in the

abovementioned conceptual model (Li et al., in press a) has implied the state-of-the-practice

Workload
Computing

Resource

Capacity

Operation

Operated

Workload
1..* 1..*

Operated

Resource

Owned

Capacity

Assigned

Resource

1..*

1

1

1..*

Host

Consumer

(Operational Scene)

 C
om

pu
ta

ti
on

 C
om

m
un

ic
at

io
n

 St
or

ag
e

 M
em

or
y

(C
ac

he
)

 Tr
an

sa
ct

io
n

S
pe

ed

 A
va

il
ab

il
it
y

 R
el

ia
bi

li
ty

 La
te

nc
y

(T
im

e)

 D
at

a
T
hr

ou
gh

pu
t
(B

an
dw

id
th

)

 Sc
al

ab
il
it
y

 Va
ri

ab
il
it
y

Client-Cloud

Cloud Exclusive

Single Cloud Provider

Multiple Cloud Providers

Single Cloud Service

(P
h

y
si

ca
l

P
ro

p
er

ty
)

P
e
r
fo

r
m

a
n

ce
 F

e
a

tu
r
e

(C
ap

acity
)

Experiment

(Environmental Scene)

Repeating Experiment for a Period
of Time

Repeating Experiment for a Number

of Times
Sequential Workload

Concurrent Workload

Different Providers with the Same

Amount of Workload

of performance evaluation factors that people currently took into account in the Cloud

Computing domain. According to different positions in the process of an evaluation

experiment (Antony, 2003), the specific classifiers of Workload and Computing Resource

indicate input process factors; the specific classifiers of Capacity suggest output process

factors; while the Operation classifiers are used to adjust values of input process factors.

Consequently, the experimental factors for performance evaluation of commercial Cloud

services can be categorized into two input process groups (Workload and Computing

Resource) and one output process group (Capacity). Then, we naturally portrayed the factor

framework as a tree with three branches (Li et al., 2012c). Each of the following subsections

describes one branch of the factor tree.

Workload Factors

Based on our previous work (Li et al., 2012a; Li et al., in press a), we found that a piece of

workload used in performance evaluation could be described through one of three different

concerns or a combination of them, namely Terminal, Activity, and Object. As such, we can

adjust the workload by varying any of the concerns through different experimental operations.

The individual workload factors are listed in Figure 4.

Figure 4. The workload factors for experimental design.

Terminal

In contrast with services to be evaluated in the Cloud, clients and particular Cloud resource

(usually VM instances) issuing workload activities can be viewed as terminals. Correspondingly,

the geographical location or number of both clients (Garfinker, 2007a) and VM instances (Hill et

al., 2010) have been used to depict the relevant workload. Meanwhile, the terminal type can also

be used as a workload factor. For example, the authors evaluated Cloud network latency by using

client and EC2 instance respectively to issue pings (Baun & Kunze, 2009). In this case, the

terminal type has the equal essence to the factor communication scope (cf. Subsection

Communication).

Workload −

Terminal −

Activity −

Object −

Number

Size/Complexity

Geographical Location

 Number

Type (Client vs. VM Instance)

Timing

Arrangement −

Direction (Input vs. Output)

Sequence (Sequential vs. Parallel)

Duration

Frequency

Number

Activity

The concept “activity” here describes an inherent property of workload, which is different

from, but adjustable by, experimental operations. For example, disk I/O request as a type of

activity can be adjusted by operations like the number or time of the requests. In fact, the number-

and time-related variables, such as activity duration (Garfinker, 2007a), frequency (Chiu &

Agrawal, 2010), number (Chiu & Agrawal, 2010), and timing (Garfinker, 2007b), have been

widely considered as workload factors in practice. Furthermore, by taking a particular Cloud

resource being evaluated as a reference, the factor activity direction can be depicted as input or

output (Baun & Kunze, 2009). As for the activity sequence in a workload, the arrangement

generates either sequential (Baun & Kunze, 2009) or parallel (Hill et al., 2010) activity flows.

Object

In a workload for Cloud services performance evaluation, objects refer to the targets of the

abovementioned activities. The concrete objects can be individual messages (Hill & Humphrey,

2009), data files (Hill et al., 2010), and transactional jobs/tasks (Deelman et al., 2008) in fine

grain, while they can also be coarse-grained workflows or problems (Deelman et al., 2008).

Therefore, the object number and object size/complexity are two typical workload factors in the

existing evaluation studies. Note that we do not consider object location as a workload factor,

because the locations of objects are usually hosted and determined by computing resources (cf.

Subsection Computing Resource Factors). In particular, a workload may have multiple object

size/complexity-related factors in one experiment. For example, a set of parameters of HPL

benchmark, such as the block size and process grid size, should be tuned simultaneously when

evaluating Amazon EC2 (Bientinesi, Iakymchuk & Napper, 2010).

Figure 5. The computing resource factors for experimental design.

Computing Resource −

Memory (Cache) −

Physical Location

Storage −

Geographical Location

Type (Queue/Table/Blob)

VM Instance −

Geographical Location

Number

OS Brand

Physical Location

VM Type

Communication −

Size

Level (IP vs. MPI message)

Scope (Intra-Cloud vs. Wide area)

Computation −

Core Number

ECU Number

Thread Number

CPU −

Architecture (32 vs. 64 bit)

Brand

Model

Ethernet I/O Index

Frequency (GHz)

Size

Computing Resource Factors

According to the physical properties in the performance feature of commercial Cloud

services (Li et al., 2012a), the Cloud Computing resource can be consumed by one or more of

four basic styles: Communication, Computation, Memory (Cache), and Storage. In particular, the

VM Instance resource is an integration of all the four basic types of computing resources. Overall,

the computing resource factors can be organized as shown in Figure 5.

Communication

As explained in (Li et al., 2012a), Communication becomes a special Cloud Computing

resource because commercial Cloud services are employed inevitably through Internet/Ethernet.

As such, the Ethernet I/O Index is usually pre-supplied as a service-level agreement (SLA) by

service providers. In practice, the scope and level of communication have been frequently

emphasized in the performance evaluation studies. Therefore, we can summarize two practical

factors: The factor Communication Scope considers intra-Cloud and wide-area data transferring

respectively (Li et al., 2010), while the Communication Level distinguishes between IP-level and

MPI-message-level networking (He et al., 2010).

Computation

When evaluating PaaS, the Computation resource is usually regarded as a black box (Iosup,

Yigitbasi & Epema, 2010). Whereas, for IaaS, the practices of Computation evaluation of Cloud

services have taken into account Core Number (Bientinesi, Iakymchuk & Napper, 2010), Elastic

Compute Unit (ECU) Number, Thread Number (Baun & Kunze, 2009), and a set of CPU

characteristics. Note that, compared to physical CPU core and thread, ECU is a logical concept

introduced by Amazon, which is defined as the CPU power of a 1.0-1.2 GHz 2007 Opteron or

Xeon processor (Ostermann et al., 2009). When it comes to CPU characteristics, the Architecture

(e.g. 32 bit vs. 64 bit) (Iosup, Yigitbasi & Epema, 2010) and Brand (e.g. AMD Opteron vs. Intel

Xeon) (Napper & Bientinesi, 2009) have been respectively considered in evaluation experiments.

Processors with the same brand can be further distinguished between different CPU Models (e.g.

Intel Xeon E5430 vs. Intel Xeon X5550) (Bientinesi, Iakymchuk & Napper, 2010). In particular,

CPU Frequency appears also as an SLA of Cloud computation resources.

Memory (Cache)

Since Memory/Cache could closely work with the Computation and Storage resources in

computing jobs, it is hard to exactly distinguish the affect to performance brought by

Memory/Cache. Therefore, not many dedicated Cloud memory/cache evaluation studies can be

found from the literature. In addition to the SLA Memory Size, interestingly, Physical Location

and Size of cache (e.g. L1=64KB vs. L2=1MB in Amazon m1.* instances) (Ostermann et al.,

2009) have attracted attentions when analyzing the memory hierarchy. However, in Ostermann et

al. (2009), different values of these factors were actually revealed by performance evaluation

rather than used for experimental design.

Storage

As mentioned in Li et al. (2012a), Storage can be either the only functionality or a

component functionality of a Cloud service, for example Amazon S3 vs. EC2. Therefore, it can

be often seen that disk-related storage evaluation also adopted experimental factors of evaluating

other relevant resources like VM instances (cf. Subsection VM Instance). Similarly, the

predefined Storage Size acts as an SLA, while a dedicated factor of evaluating Storage is the

Geographical Location. Different geographical locations of Storage resources can result either

from different service data centers (e.g. S3 vs. S3-Europe) (Palankar et al., 2008) or from

different storing mechanisms (e.g. local disk vs. remote NFS drive) (Sobel et al., 2008). In

addition, although not all of the public Cloud providers specified the definitions, the Storage

resource has been distinguished among three types of offers: Blob, Table and Queue (Li et al.,

2010). Note that different Storage Types correspond to different sets of data-access activities, as

described in Li et al. (2012b).

VM Instance

VM Instance is one of the most popular computing resource styles in the commercial Cloud

service market. The widely considered factors in current VM Instance evaluation experiments are

Geographical Location, Instance Number, and VM Type (Bientinesi, Iakymchuk & Napper, 2010;

Hill & Humphrey, 2009; Hill et al., 2010; Iosup, Yigitbasi & Epema, 2010; Li et al., 2010;

Ostermann et al., 2009; Stantchev, 2009). The VM Type of a particular instance naturally reflects

its corresponding provider, as demonstrated in (Li et al., 2010). Moreover, although not common,

the OS Brand (e.g. Linux vs. Windows) (Li et al., 2010) and Physical Location (Dejun, Pierre &

Chi, 2009) also emerged as experimental factors in some evaluation studies. Note that the

physical location of a VM instance indicates the instance's un-virtualized environment, which is

not controllable by evaluators in evaluation experiments (Dejun, Pierre & Chi, 2009). In

particular, recall that a VM Instance integrates above four basic types of computing resources.

We can therefore find that some factors of evaluating previous resources were also used in the

evaluation of VM Instances, for example the CPU Architecture and Core Number (Bientinesi,

Iakymchuk & Napper, 2010; Ostermann et al., 2009).

Figure 6. The capacity factors for experimental design.

Capacity Factors

Capacity −

Data Throughput −

A set of available metrics +

Latency −

A set of available metrics +

Transaction Speed −

A set of available metrics +

Availability −

A set of available metrics +

Reliability −

A set of available metrics +

Scalability −

A set of available metrics +

Variability −

A set of available metrics +

As discussed about the generic reality of performance evaluation (cf. Figure 3), it is clear

that the capacities of a Cloud computing resource are intangible until they are measured.

Meanwhile, the measurement has to be realized by using measurable and quantitative metrics (Le

Boudec, 2011). Therefore, we can treat the values of relevant metrics as tangible representations

of the evaluated capacities. Moreover, a particular capacity of a commercial Cloud service may

be reflected by a set of relevant metrics, and each metric provides a different lens into the

capacity as a whole (Fortier & Michel, 2003). For example, Benchmark Transactional Job Delay

(Luckow & Jha, 2010) and Benchmark Delay (Juve et al., 2009) are both Latency metrics: the

former is from the individual perspective, while the latter from the global perspective. As such,

we further regard relevant metrics as possible output process factors (Antony, 2003) when

measuring a particular Cloud service capacity, and every single output process factor can be used

as a candidate response (Antony, 2003) in the experimental design. Since we have clarified seven

different Cloud service capacities (Li et al., 2012a), i.e. Data Throughput, Latency, Transaction

Speed, Availability, Reliability, Scalability, and Variability, the possible capacity factors (metrics)

can be correspondingly categorized as shown in Figure 6. Due to the limit of space, it is

impossible and unnecessary to exhaustively list all the metrics in this paper. Some sample metrics

for evaluating Memory (Cache) are shown in Table 1. In fact, the de facto metrics for

performance evaluation of commercial Cloud services have been collected and summarized in our

previous work (Li et al., 2012b).

Table 1. Sample metrics for evaluating Memory (Cache) (Li et al., 2012b).

Capacity Metrics Benchmark

Transaction

Speed

Random Memory Update Rate (MUP/s,

GUP/s)
HPCC: RandomAccess

Latency
Mean Hit Time (s) Land Elevation Change App

Memcache Get/Put/Response Time (ms) Operate 1Byte/ 1MB data

Data

Throughput
Memory bit/Byte Speed (MB/s, GM/s)

CacheBench

HPCC: PTRANS

HPCC: STREAM

THREE TYPICAL SCENARIOS OF APPLYING DOE TECHNIQUES
Recall that relevant factors play a prerequisite role in designing evaluation experiments.

Benefitting from the pre-established factor framework, evaluators may employ suitable DOE

techniques for experimental design and analysis when evaluating Cloud services. Here we use

two cases to preliminarily explain how to apply DOE to Cloud services evaluation. First, we
replicate a study of Google AppEngine evaluation (Iosup, Yigitbasi & Epema, 2010) to

demonstrate the usage of two techniques for determining sample size and analyzing variance.

Second, we adopt an existing study of Amazon EC2 disk I/O evaluation to illustrate the

application of 2
3
 Factorial Design.

Sample Size Determination

Determining sample size is critical in any experimental design problem (Montgomery, 2009).

Unfortunately, most of the existing Cloud services evaluation studies did not justify how the

number of experimental replicates was decided. In fact, the statistical approach in DOE can be

used to facilitate sample size determination. We demonstrate this by replicating a straightforward

study of Google AppEngine evaluation.

The overall objective of the original study (Iosup, Yigitbasi & Epema, 2010) is to evaluate

the computation performance of the Google AppEngine Python runtime. In particular, the study

investigated how variable the Google AppEngine’s performance was during different time

periods. Therefore, by exploring the experimental factor framework, we can identify that the only

factor considered in the original evaluation work is Timing (cf. Figure 4). Although there are

other potentially useful factors like Workload Size, we deliberately ignored them to make our

study comparable with the original one. Similarly, following the original study, we directly

selected the metric Benchmark Runtime to measure the computation performance of Google

AppEngine. With regard to the benchmark, we coded a Python program to recursively calculate

the 27th Fibonacci number, as implemented in (Iosup, Yigitbasi & Epema, 2010).

Furthermore, to make this demonstration simple and clear, we decided to choose seven

consecutive days as the experimental period. In other words, we treated different dates as

different levels of the factor Timing. As such, the evaluation requirement can be formally

hypothesized as Equation (1) to test the equality of seven computation performance means, where

µi refers to the Fibonacci calculation mean in the ith day.

)7,..2,1,(

:

...:

1

7210

ji and ji

j) (i, pair one least at for H

H

ji

 (1)

As suggested in (Montgomery, 2009), we performed a set of random and pilot Fibonacci

calculations within Google AppEngine to estimate its performance standard deviation, and then

used the Operating Characteristic (OC) Curves to find a suitable number of replicates for

everyday. An OC curve is essentially “a plot of the type II error probability of a statistical test for

a particular sample size versus a parameter that reflects the extent to which the null hypothesis is

false” (Montgomery, 2009). The type II error is the failure to reject a false null hypothesis, and

thus the type II error probability can be defined as Equation (2). The null hypothesis H0 in this

case is that the seven performance means are equal to each other.

)(

)(

false is H | H reject to FailP

error II typeP

00

 (2)

Recall that the value of standard deviation must be specified before using OC curves

(Montgomery, 2009). Given the estimated standard deviation is 34ms by pilot Fibonacci

calculations, we finally decided to run 123 replicates per day (or replicate once per 720 seconds)

to satisfy a target power (1 − β) of at least 0.9. To save space, here we replace the OC curve

illustration with the Minitab output of finding sample sizes, as shown in Figure 7.

Figure 7. Sample size for performing Google AppEngine evaluation (by Minitab).

Power and Sample Size

One-way ANOVA

Alpha = 0.01 Assumed standard deviation = 34

Factors: 1 Number of levels: 7

 Maximum Sample Target

Difference Size Power Actual Power

 21 123 0.9 0.900852

The sample size is for each level.

Analysis of Variance

We continue the previous case study to demonstrate the one-factor DOE technique for

analyzing the variance of Google AppEngine performance. Given the determined sample size, the

evaluation experiments were correspondingly deployed and implemented. Several typical indices

of the experimental result are shown in Table 2, while the specific result can be visualized as

shown in Figure 8.

Table 2. Experimental result of the 27th Fibonacci calculation with Google AppEngine Python

runtime

Date Average Minimum Maximum Standard

Deviation

Sept. 1 197.97ms 152.36ms 329.62ms 35.07ms

Sept. 2 194.65ms 151.65ms 311.38ms 30.43ms

Sept. 3 197.83ms 150.57ms 308.64ms 28.81ms

Sept. 4 199.95ms 151.13ms 329.29ms 34.82ms

Sept. 5 208.44ms 155.14ms 318.45ms 38.38ms

Sept. 6 226.39ms 153.91ms 313.66ms 45.48ms

Sept. 7 220.79ms 148.15ms 366.49ms 44.18ms

Total 206.58ms 148.15ms 366.49ms 38.84ms

Figure 8. Google AppEngine computation performance during seven days.

Table 2 and Figure 8 intuitively show that Google AppEngine takes 200 ± 50ms in general to

calculate the 27th Fibonacci number. Moreover, the computation performance peak of Google

AppEngine is relatively stable (around 150ms for the 27th Fibonacci calculation) everyday, while

the worst-case calculation time varies largely. However, such observations do not advise whether

or not we can expect a stable mean of the computation performance of Google AppEngine.

Therefore, we employed Tukey’s Test (Montgomery, 2009) to perform all pair-wise mean

comparisons. Given the significance level α, the procedure of Tukey’s Test constructs confidence

intervals on the differences in all pairs of means, and the simultaneous confidence level is 100(1

− α) percent for those intervals. In this case, we directly show the output of Tukey’s Test by using

Minitab (cf. Figure 9).

Figure 9. Grouping information in Tukey’s analysis result (by Minitab).

One-way ANOVA: Runtime versus Date

Grouping Information Using Tukey Method

Date N Mean Grouping

Sept. 6 123 226.39 A

Sept. 7 123 220.79 A B

Sept. 5 123 208.44 B C

Sept. 4 123 199.95 C

Sept. 1 123 197.97 C

Sept. 3 123 197.83 C

Sept. 2 123 194.65 C

Means that do not share a letter are significantly different.

It can be seen that the seven days’ Fibonacci calculation means are divided into three groups,

which statistically confirms that it is impossible to achieve a stable performance when using

Google AppEngine at different period of time. However, interestingly, Group B can be viewed as

a linkage between Group A and C. We thus claim that, although not absolutely stable, the

performance mean of Google AppEngine may fluctuate mildly.

2
3
 Factorial Design

In general cases of Cloud services evaluation, one experiment could take into account more

than one factor related to both the service to be evaluated and the workload. Suppose there is a

requirement of evaluating Amazon EC2 with respect to its disk I/O. Given the factor framework

proposed in this paper, we can quickly and conveniently lookup and choose experimental factors

according to the evaluation requirement. To simplify the demonstration, here we constrain the

terminal to be clients, while only consider the direction of disk I/O and data size to be read/write

in workload factors, and only consider the EC2 VM type in computing resource factors. As for

the capacity factors, we can employ multiple suitable metrics in this evaluation, for example disk

I/O latency and data throughput. However, since only one metric should be determined as the

response in an experimental design (Antony, 2003), we choose the disk data throughput in this

case. Thus, we have identified active direction, object size and VM type as factors, while data

throughput as response in the framework for designing experiments. In particular, we use two-

level settings for the three factors: the value of active direction can be Write or Read; object size

can be Char or Block; and VM type only covers M1.small and M1.large. In addition, we use

“MB/s” as the unit of data throughput.

Since only three factors are considered, we can simply adopt the most straightforward design

technique, namely Full-factorial Design (Antony, 2003), for this demonstration. This design

technique adjusts one factor at a time, which results in an experimental matrix comprising eight

trials, as shown in Matrix (1). For conciseness, we further assign aliases to those experimental

factors, as listed below. Note that the sequence of the experimental trials has been randomized to

reduce possible noises or biases (Antony, 2003) during the designing process.

 A: Activity Direction (Write vs. Read).

 B: Object Size (Char vs. Block).

 C: VM Type (M1.small vs. M1.large).

 Response: Data Throughput (MB/s).

?M1.largeBlockWrite8

?M1.largeCharWrite7

?M1.smallBlockRead6

?M1.largeBlockRead5

?smallMCharRead4

?smallMCharWrite3

?M1.largeCharRead2

?M1.smallBlockWrite1

ResponseCBAtrial

.1

.1

 (1)

Following the experimental matrix, we can implement evaluation experiments trial by trial,

and fill the Response column with experimental results. For our convenience, here we directly

employ the evaluation results reported in (Iosup et al., 2011), as listed in Matrix (2).

 MB/s63.2M1.largeBlockWrite8

 MB/s35.9M1.largeCharWrite7

 MB/s60.2M1.smallBlockRead6

 MB/s64.3M1.largeBlockRead5

 MB/s22.3smallMCharRead4

 MB/s25.9smallMCharWrite3

 MB/s50.9M1.largeCharRead2

 MB/s73.5M1.smallBlockWrite1

ResponseCBAtrial

.1

.1

 (2)

Finally, different analytical techniques can be employed to reveal more comprehensive

meanings of experimental results (Antony, 2003) for commercial Cloud services. For example, in

this case, we can further investigate the significances of these factors to analyze their different

influences on the disk I/O performance. In detail, by setting the significance level α as 0.05

(Jackson, 2011), we draw a Pareto plot to detect the factor and interaction effects that are

important to the process of reading/writing data from/to EC2 disks, as shown in Figure 10.

Figure 10. The Pareto plot of factor effects.

A

ABC

AB

C

AC

BC

B

403020100

T
e

rm

Effect

39.52

A A ctiv ity Direction

B Data Size

C V M Instance Ty pe

Factor Name

Pareto Chart of the Effects
(response is Data Throughput, Alpha = 0.05)

Lenth's PSE = 10.5

Given a particular significance level, Pareto plot displays a red reference line besides the

effect values. Any effect that extends past the reference line is potentially important (Antony,

2003). In Figure 10, none of the factor or interaction effects is beyond the reference line, which

implies that none of the factors or interactions significantly influences the EC2 disk I/O

performance. Therefore, we can claim that EC2 disk I/O is statistically stable with respect to

those three factors. However, Factor B (Data Size to be read/written) has relatively significant

influence on the performance of EC2 disk I/O. Since the throughput of small-size data (Char) is

much lower than that of large-size data (Block), we can conclude that there is a bottleneck of

transaction overhead when reading/writing small size of data. On the contrary, there is little I/O

performance effect when switching activity directions, which means the disk I/O of EC2 is

particularly stable no matter reading or writing the same size of data.

In particular, through the above demonstrations, we show that the proposed factor

framework offers a concrete and rational foundation for implementing performance evaluation of

commercial Cloud services. When evaluating Cloud services, there is no doubt that the

techniques of experimental design and analysis can still be applied by using intuitively selected

factors. Nevertheless, by referring to the existing evaluation experiences, evaluators can

conveniently identify suitable experimental factors while excluding the others, which essentially

suggest a systematic rather than ad hoc decision making process.

CONCLUSIONS AND FUTURE WORK

Cloud Computing has attracted a tremendous amount of attention from both

customers and providers in the current computing industry, which leads to a competitive

market of commercial Cloud services. As a result, different Cloud infrastructures and

services may be offered with different terminology, definitions, and goals (Prodan &

Ostermann, 2009). On the one hand, different Cloud providers have their own

idiosyncratic characteristics when developing services (Li et al., 2010). On the other hand,

even the same provider can supply different Cloud services with comparable

functionalities for different purposes. For example, Amazon has provided several options

of storage service, such as EC2, EBS, and S3 (Chiu & Agrawal, 2010). Consequently,

performance evaluation of candidate services would be crucial and beneficial for many

purposes ranging from cost-benefit analysis to service improvement (Li et al., 2010).

When it comes to performance evaluation of a computing system, proper

experimental design and analysis should be performed with respect to a set of factors that

may influence the system's performance (Jain, 1991; Montgomery, 2009). In the Cloud

Computing domain, however, most of the evaluators intuitively employed experimental

factors and implemented ad hoc experiments with few comprehensive analyses for

evaluating performance of commercial Cloud services. Thus, we suggest applying DOE

to systematically instruct Cloud services evaluation. In particular, considering factor

identification plays a prerequisite role in experimental design, we collected experimental

factors that people currently took into account in Cloud services performance evaluation,

and arranged them into a tree-structured framework.

The main contribution of this work is twofold. On the one hand, the established

factor framework supplies a dictionary-like approach to selecting experimental factors for

Cloud services performance evaluation. Benefitting from the framework, evaluators can

identify necessary factors in a concrete space instead of on the fly. Note that the

experimental factor framework is supposed to supplement, but not replace, the expert

judgment for experimental factor identification, which would be particularly helpful for

Cloud services evaluation when there is a lack of a bunch of experts. On the other hand,

based on the experimental factor framework, we initially suggested a series of DOE

techniques for sample size determination, single-factor experimental analysis, and three-

factor experimental design. Thus, new evaluators can conveniently refer to our work and adapt

these DOE techniques to their own evaluation scenarios.
The future work of this research will be unfolded along two directions. First, we will

gradually collect feedback from external experts to supplement this factor framework. As

explained previously, Cloud Computing is still maturing and relatively chaotic (Stokes,

2011), it is therefore impossible to exhaustively identify the relevant experimental factors

all at once. Through smooth expansion, we can make this factor framework increasingly

suit the more general area of evaluation of Cloud Computing. Second, given the currently

available experimental factors, we plan to further introduce and adapt suitable DOE

techniques to evaluating commercial Cloud services. As demonstrated in Section 4, the

adapted DOE techniques together with the experimental factor framework would

effectively support systematic implementations of Cloud services evaluation.

ACKNOWLEDGEMENT

NICTA is funded by the Australian Government as represented by the Department

of Broadband, Communications and the Digital Economy and the Australian Research

Council through the ICT Centre of Excellence program.

REFERENCE

Antony, J. (2003). Design of Experiments for Engineers and Scientists. Burlington, MA:

Butterworth-Heinemann.

Baun, C., & Kunze, M. (2009). Performance Measurement of a Private Cloud in the

OpenCirrus
TM

 Testbed. Paper presented at the Proceedings of the 4th Workshop on

Virtualization in High-Performance Cloud Computing (VHPC 2009) in conjunction with

the 15th International European Conference on Parallel and Distributed Computing

(Euro-Par 2009), Delft, The Netherlands.

Bientinesi, P., Iakymchuk, R., & Napper, J. (2010) HPC on competitive Cloud resources. In B.

Furht, & A. Escalante (Eds.), Handbook of Cloud Computing (pp. 493-516). New York:

Springer-Verlag.

Binnig, C., Kossmann, D., Kraska, T., & Loesing, S. (2009). How is the Weather Tomorrow?

Towards a Benchmark for the Cloud. Paper presented at the Proceedings of the 2nd

International Workshop on Testing Database Systems (DBTest 2009) in conjunction with

ACM SIGMOD/PODPS International Conference on Management of Data

(SIGMOD/PODS 2009), Providence, USA.

Chiu, D., & Agrawal, G. (2010). Evaluating Caching and Storage Options on the Amazon Web

Services Cloud. Paper presented at the Proceedings of the 11th ACM/IEEE International

Conference on Grid Computing (Grid 2010), Brussels, Belgium.

Deelman, E., Singh, G., Livny, M., Berriman, B., & Good, J. (2008). The Cost of Doing Science

on the Cloud: The Montage Example. Paper presented at the Proceedings of the 2008

International Conference on High Performance Computing, Networking, Storage and

Analysis (SC 2008), Austin, Texas, USA.

Dejun, J., Pierre, G., & Chi, C.-H. (2009). EC2 Performance Analysis for Resource Provisioning

of Service-Oriented Applications. Paper presented at the Proceedings of the 2009

International Conference on Service-Oriented Computing (ICSOC/ServiceWave 2009),

Stockholm, Sweden.

Dybå, T., Kitchenham, B. A., & Jørgensen, M. (2005). Evidence-based software engineering for

practitioners. IEEE Software, 22(1), 58-65.

Fortier, P. J., & Michel, H. E. (2003). Computer Systems Performance Evaluation and Prediction.

Burlington, MA: Digital Press.

Garfinkel, S. (2007a). An evaluation of Amazon’s grid computing services: EC2, S3 and SQS

(Tech. Rep. TR-08-07). Cambridge, MA: Harvard University, School of Engineering and

Applied Sciences.

Garfinkel, S. (2007b). Commodity grid computing with Amazon’s S3 and EC2. ;Login, 32(1), 7-

13.

He, Q., Zhou, S., Kobler, B., Duffy, D., & McGlynn, T. (2010). Case Study for Running HPC

Applications in Public Clouds. Paper presented at the Proceedings of the 19th ACM

International Symposium on High Performance Distributed Computing (HPDC 2010),

Chicago, Illinois, USA.

Hill, Z., & Humphrey, M. (2009). A Quantitative Analysis of High Performance Computing with

Amazon’s EC2 Infrastructure: The Death of the Local Cluster? Paper presented at the

Proceedings of the 10th IEEE/ACM International Conference on Grid Computing (Grid

2009), Banff, Alberta, Canada.

Hill, Z., Li, J., Mao, M., Ruiz-Alvarez, A., & Humphrey, M. (2010). Early Observations on the

Performance of Windows Azure. Paper presented at the Proceedings of the 19th ACM

International Symposium High Performance Distributed Computing (HPDC 2010),

Chicago, Illinois, USA.

Iosup, A., Ostermann, S., Yigitbasi, N., Prodan, R., Fahringer, T., & Epema, D. H. J. (2011).

Performance analysis of Cloud computing services for many-tasks scientific computing.

IEEE Transactions on Parallel and Distributed Systems, 22(6), 931-945.

Iosup, A., Yigitbasi, N., & Epema, D. (2010). On the performance variability of production

Cloud services (Tech. Rep. PDS-2010-002). Netherlands: Delft University of Technology.

Jackson, S. L. (2011). Research Methods and Statistics: A Critical Thinking Approach, 4th ed.

Belmont, CA: Wadsworth Publishing.

Jain, R. K. (1991). The Art of Computer Systems Performance Analysis: Techniques for

Experimental Design, Measurement, Simulation, and Modeling. New York, NY: Wiley

Computer Publishing, John Wiley & Sons, Inc.

Juve, G., Deelman, E., Vahi, K., Mehta, G., Berriman, B., Berman, B. P., & Maechling, P. (2009).

Scientific Workflow Applications on Amazon EC2. Paper presented at the Proceedings of

the Workshop on Cloud-based Services and Applications in conjunction with the 5th

IEEE International Conference on e-Science (e-Science 2009), Oxford, UK.

Le Boudec, J.-Y. (2011). Performance Evaluation of Computer and Communication Systems.

Lausanne, Switzerland: EFPL Press.

Li, Z., O’Brien, L., Cai, R., & Zhang, H. (2012a). Towards a Taxonomy of Performance

Evaluation of Commercial Cloud Services. Paper presented at the Proceedings of the 5th

International Conference on Cloud Computing (IEEE CLOUD 2012), Honolulu, Hawaii,

USA.

Li, Z., O’Brien, L., Zhang, H., & Cai, R. (2012b). On a Catalogue of Metrics for Evaluating

Commercial Cloud Services. Paper presented at the Proceedings of the 13th ACM/IEEE

International Conference on Grid Computing (Grid 2012), Beijing, China.

Li, Z., O’Brien, L., Zhang, H., & Cai, R. (2012c). A Factor Framework for Experimental Design

for Performance Evaluation of Commercial Cloud Services. Paper presented at the

Proceedings of the 4th International Conference on Cloud Computing Technology and

Science (CloudCom 2012), Taipei, Taiwan.

Li, Z., O’Brien, L., Zhang, H., & Cai, R. (in press a). On a taxonomy-based conceptual model of

performance evaluation of Infrastructure as a Service. IEEE Transactions on Service

Computing.

Li, Z., Zhang, H., O’Brien, L., Cai, R., & Flint, S. (in press b) On evaluating commercial Cloud

services: A systematic review. Journal of Systems and Software.

Li, A., Yang, X., Kandula, S., & Zhang, M. (2010). CloudCmp: Comparing Public Cloud

Providers. Paper presented at the Proceedings of the 10th Annual Conference on Internet

Measurement (IMC 2010), Melbourne, Australia.

Luckow, A., & Jha, S. (2010). Abstractions for Loosely-coupled and Ensemble-based Simulations

on Azure. Paper presented at the Proceedings of the 2nd IEEE International Conference

on Cloud Computing Technology and Science (CloudCom 2010), Indianapolis, USA.

Mellor, S. J., Clark, A. N., & Futagami, T. (2003). Model-driven development - guest editor’s

introduction. IEEE Software, 20(5), 14-18.

Montgomery, D. C. (2009). Design and Analysis of Experiments, 7th ed. Hoboken, NJ: John

Wiley & Sons, Inc.

Napper, J., & Bientinesi, P. (2009). Can Cloud Computing Reach the Top500? Paper presented at

the Proceedings of the Combined Workshops on UnConventional High Performance

Computing Workshop plus Memory Access Workshop (UCHPC-MAW 2009), Ischia,

Italy.

Ostermann, S., Iosup, A., Yigitbasi, N., Prodan, R., Fahringer, T., & Epema, D. H. J. (2009). A

Performance Analysis of EC2 Cloud Computing Services for Scientific Computing. Paper

presented at the Proceedings of the 1st International Conference on Cloud Computing

(CloudComp 2009), Munich, Germany.

Palankar, M. R., Iamnitchi, A., Ripeanu, M., & Garfinkel, S. (2008). Amazon S3 for Science

Grids: A Viable Solution? Paper presented at the Proceedings of the 2008 International

Workshop on Data-aware Distributed Computing (DADC 2008), Boston, MA, USA.

Prodan, R., & Ostermann, S. (2009). A Survey and Taxonomy of Infrastructure as a Service and

Web Hosting Cloud Providers. Paper presented at the Proceedings of the 10th

IEEE/ACM International Conference on Grid Computing (Grid 2009), Banff, Alberta,

Canada.

Sobel, W., Subramanyam, S., Sucharitakul, A., Nguyen, J., Wong, H., Klepchukov, A., Patil, S.,

Fox, A., & Patterson, D. (2008). Cloudstone: Multi-platform, Multi-language Benchmark

and Measurement Tools for Web 2.0. Paper presented at the Proceedings of the 1st

Workshop on Cloud Computing and Its Applications (CCA 2008), Chicago, IL.

Stantchev, V. (2009). Performance Evaluation of Cloud Computing Offerings. Paper presented at

the Proceedings of the 3rd International Conference on Advanced Engineering

Computing and Applications in Sciences (ADVCOMP 2009), Sliema, Malta.

Stokes, J. (2011). The PC is order, the Cloud is chaos. Retrieved March 23, 2013, from

http://www.wired.com/cloudline/2011/12/the-pc-is-order/.

Wang, L., Laszewski, G., Chen, D., Tao, J., & Kunze, M. (2010a). Provide virtual machine

information for Grid computing. IEEE Transactions on Systems, Man, and Cybernetics,

Part A 40(6), 1362-1374.

Wang, L., Laszewski, G., Kunze, M., Tao, J., & Dayal, J. (2010b). Provide virtual distributed

environments for Grid computing on demand. Advances in Engineering Software 41(2),

213-219.

Wang, L., Laszewski, G., Tao, J., & Kunze, M. (2010c). Virtual Data System on distributed

virtual machines in computational grids. International Journal of Ad Hoc and Ubiquitous

Computing 6(4), 194-204.

Wang, L., Chen, D., & Huang, F. (2011). Virtual workflow system for distributed collaborative

scientific applications on Grids. Computers & Electrical Engineering 37(3), 300-310.

