
ecent studies by Cisco and IBM show that we generate 2.5 
quintillion bytes of data per day, and this is set to explode 
to 40 yottabytes by 2020—that’s 5,200 gigabytes for every 
person on earth.1,2 Much of this data is and will be gener-

ated from Internet of Things (IoT) devices and sensors. IoT com-
prises billions of Internet-connected devices (ICDs) or “things,” 
each of which can sense, communicate, compute, and potentially 
actuate, and can have intelligence, multimodal interfaces, physi-
cal/virtual identities, and attributes. ICDs can be sensors, RFIDs, 
social media, clickstreams, business transactions, actuators (such 
as machines/equipment fitted with sensors and deployed for min-
ing, oil exploration, or manufacturing operations), lab instruments 
(such as a high energy physics synchrotron), and smart consumer 
appliances (TV, phone, and so on). 

The IoT vision is to allow 
things to be connected anytime, anywhere, with 
anything and anyone, ideally using any path, net-
work, and service. This vision has recently given rise 
to the notion of IoT big data applications that are ca-
pable of producing billions of datastreams and tens 
of years of historical data to provide the knowledge 
required to support timely decision making. These 
applications need to process and manage stream-
ing and multidimensional data from geographically 
distributed data sources that can be available in dif-
ferent formats, present in different locations, and 
reliable at different levels of confidence.

IoT Big Data Application Requirements
The current generation of IoT big data applica-
tions (such as smart supply chain management, 
syndromic surveillance, and smart energy grids) 
combines multiple independent data analytics 
models, historical data repositories, and real-time 
datastreams that are likely to be available across 
geographically distributed datacenters (both pri-
vate and public). For example, in a smart supply 
chain management IoT application, advanced an-
alytics provides the next frontier of supply chain 
innovation. However, data management in supply 
chains is challenging because: 

Processing Distributed 
Internet of Things Data  
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• datasets span multiple continents and 
are independently managed by hun-
dreds of suppliers and distributors; 

• datasets are updated in real time 
based on feeds from sensors attached 
to manufacturing devices and deliv-
ery vehicles; and 

• customers express their sentiments 
regarding products via a mix of ven-
ues such as social media, product 
review portals, and blogs. 

Companies must combine and analyze 
this distributed data along with contex-
tual factors such as weather forecasts 
and pricing positions to establish which 
factors strongly influence the demand 
of particular products and then quick-
ly take action to adapt to competitive 
and evolving environments. Similarly, 
syndromic surveillance IoT applica-
tions require churning through massive 
amounts of heterogeneous, real-time in-
formation available from social media, 
emergency rooms, health departments, 
hospitals, and ambulatory care sites 
to detect outbreaks of deadly diseases 
such as SARS, avian flu, cholera, and 
dengue fever. 

Clearly, these IoT applications pro-
duce big datasets that can’t be trans-
ferred over the Internet to be processed 
by a centralized public or private data-
center. The main reasons for this state 
of affairs are: 

• the datasets have strict privacy, se-
curity, and regulatory constraints 
that prohibit their transfer outside 
the parent domain; 

• the datasets flow at a volume and 
velocity too large and too fast to be 
processed by a single centralized 
datacenter as it could lead to high 
network communication overhead; 
and

• the analytics models and intel-
ligence required to process the 

datasets are available across geo-
graphically distributed locations.

Despite the requirements posed by IoT 
big data applications, the capability of 
existing big data processing technologies 
and datacenter computing infrastruc-
ture is limited. For example, they can 
only process data on compute and stor-
age resources within a centralized local 
area network, such as a single cluster 
within a datacenter. In addition, they 
don’t provide mechanisms to seamlessly 
integrate data spread across multiple 
distributed heterogeneous data sources. 

Finally, they can’t ensure security and 
privacy-preserving processing of hetero-
geneous data governed by heterogeneous 
policies and access control rules.

State of the Art in Distributed IoT 
Data Processing 
Existing big data processing technolo-
gies and datacenter infrastructures have 
varied capabilities with respect to meet-
ing the distributed IoT data processing 
challenges.

Datacenter Cloud Computing 
Infrastructure Service Stack
Commercial and public datacenters such 
as Amazon Web Services and Micro-
soft Azure provide computing, storage, 
and software resources as cloud ser-
vices, which are enabled by virtualized 

software/middleware stacks. Examples 
include virtual machine management 
systems such as Eucalyptus and Amazon 
Elastic Compute Cloud (EC2); image 
management tools such as the Future-
Grid image repository3; massive data 
storage/file systems such as Google File 
System (GFS), the Hadoop distributed 
file system (HDFS), and Amazon Simple 
Storage Service (S3); and data-intensive 
execution frameworks such as Amazon 
Elastic MapReduce. In addition, Future-
Grid (http://FutureGrid.org) and Open-
Stack provide software stack definitions 
for cloud datacenters. 

On the other hand, private datacen-
ters typically build basic infrastructure 
services by combining available soft-
ware tools and services. This software 
includes cluster management systems 
such as Torque, Oscar, and Simple 
Linux Utility for Resource Management 
(Slurm); parallel file/storage systems 
such as storage area network/network-
attached storage (SAN/NAS)4 and 
Lustre (http://wiki.lustre.org); as well 
as data management systems such as 
the Berkeley Storage Manager (BeST-
Man, https://sdm.lbl.gov/bestman) and 
dCache (www.dcache.org). In addition, 
some private datacenters are enabled 
for resource sharing with grid comput-
ing middleware, such as Globus tool-
kits, Uniform Interface to Computing 
Resources (Unicore, www.unicore.eu), 

The IoT vision is to allow things to be 
connected anytime, anywhere, with 
anything and anyone, ideally using 

any path, network, and service.
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and Lightweight Middleware for Grid 
Computing (gLite).

Massive Data Processing Models and 
Framework
The MapReduce paradigm has been 
widely used for large-scale data-intensive 
computing within datacenters due to 
its low cost, massive data parallel-
ism, and fault-tolerant processing. The 
most popular implementation, Ha-
doop framework allows applications 
to run on large clusters and provides 
transparent reliability and data trans-
fer. Other implementations include 
Compute Unified Device Architecture 
(CUDA),5 field programmable gate array 
(FPGA),6 virtual machines,7 as well as 
streaming runtime,8 grid,8 and oppor-
tunistic environment.9 Apache Hadoop 
on Demand (HOD) provides virtual 
Hadoop clusters over a large physical 
cluster based on Torque. MyHadoop 
provides on-demand Hadoop instances 
on high-performance computing (HPC) 
resources via traditional schedulers.10 
Other MapReduce-like projects in-
clude Twister (www.iterativemapreduce 
.org), Sector/Spear (http://sector 
.sourceforge.net), and All-pairs.11

Data Management Service across 
Datacenters
Following four storage service abstrac-
tions supported by cloud providers dif-
fer in how they store, index, and execute 
queries: 

• Binary Large Object (Blob) for un-
structured data such as Amazon S3 
and Azure Blob;

• key-value storage such as HBase, 
MongoDB, and BigTable;

• message queuing systems such as 
SQS and Apache Kafka; and 

• relational database management sys-
tems such as Oracle and MySQL, 
which support ACID (atomicity, 

consistency, isolation, durability) 
transactional properties. 

Accordingly, several research efforts 
have integrated different cloud data stor-
age services by providing a transparent 
interface. Examples are Simple Cloud 
API (http://simplecloud.com), Simple 
API for Grid Applications (SAGA) with 
an SRM interface, and some uniform 
services such as PDC@KTH’s proxy 
service12 and Open Grid Services Ar-
chitecture Data Access and Integration 
(OGSA-DAI, www.ogsadai.org.uk) Web 
services. In addition, a number of third-
party providers (DropBox, Mozy, and so 
on) simplify online cloud storage access. 

Data-Intensive Workflow Computing
Typical data-intensive scientific work-
flow frameworks include Pegasus, 
Kepler, Taverna, Triana, Swift, and 
Trident. Various business workflow 
technologies have also been applied to 
data-intensive workflow systems. Ex-
amples include service orchestration 
with Business Process Execution Lan-
guage  (BPEL) and YAWL (Yet Another 
Workflow Language),13 service choreog-
raphy with Web Services Choreography 
Description Language (WS-CDL, www 
.w3.org/TR/ws-cdl-10), and service-
oriented architectures.14

Benchmark, Application Kernels, 
Standards, and Recommendations
Several benchmarks and application 
kernels have been developed, including 
Graph 500 (www.graph500.org), Hadoop 
Sort (http://wiki.apache.org/hadoop/Sort) 
and Sort benchmark (http://sortbenchmark 
.org), MalStone,15 Yahoo Cloud Serving 
Benchmark (http://research.yahoo.com/
Web_Information_Management/YCSB), 
Google cluster workload (http://code 
.google.com/p/googleclusterdata), TPC-
H benchmarks (www.tpc.org/tpch), Big-
DataBench, BigBench, Hibench, and 

PigMix,  fueled by the need to analyze 
the performance of different big data 
technologies. These benchmark suites 
model workloads for stress testing one 
or more categories of big data processing 
technologies. Among these frameworks, 
BigDataBench is most comprehensive 
because it constitutes workload mod-
els for NoSQL, database management 
systems (DBMSs), SPEs (Stream Pro-
cessing Engines), and batch processing 
frameworks. Primarily, BigDataBench 
targets the search engine, social network, 
and e-commerce application domains.

However, there are limited bench-
marks and application kernels for het-
erogeneous datacenters. In fact, there’s 
no agreement on available performance 
benchmarking for executing large-scale 
IoT applications across distributed data-
centers. Actually, the lack of intercent-
er benchmarks and standards should 
be the key research agenda for the fu-
ture. Currently, the National Institute 
of Standards and Technology (NIST), 
Open Grid Forum (OGF), Distributed 
Management Task Force (DMTF) Cloud 
working group, Cloud Security Alliance, 
and Cloud Standards Customer Council 
are all working on cloud standards.

Research Issues
Big IoT data processing across multiple 
distributed datacenters remains chal-
lenging, mainly because of technical 
issues related to basic service stacks 
for datacenter computing infrastruc-
tures, massive data processing models, 
trusted data management services, 
data-intensive workflow computing, and 
benchmarks.

Service Stacks in a Multidatacenter 
Computing Infrastructure
Despite significant advances, public 
cloud computing technologies are still 
technically challenging for serving 
large-scale IoT applications across data-
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centers. First, cloud technologies must 
be integrated into the resource manage-
ment and file systems of existing private 
datacenter infrastructures to provision 
cloud services. 

Massive Data Processing Models for 
Datacenters
There are several limitations in using 
MapReduce and Hadoop for large-scale 
distributed massive data processing. 
First, this framework is limited to com-
pute infrastructures within a local area 
network or datacenter, and can’t be di-
rectly used for large-scale IoT applica-
tions across geographically distributed 
datacenters. Second, MapReduce  suf-
fers from performance degradation due 
to the absence of a high-performance 
parallel and distributed file system that 
can seamlessly operate across multiple 
datacenters. Third, MapReduce uses 
a task “fork” mechanism that can’t be 
directly deployed in traditional private 
datacenters with local task managers 
such as Torque and Globus, not to men-
tion the lack of security models. Fourth, 
the limited semantics of MapReduce 
can’t easily present the diverse paral-
lel patterns of large-scale scientific 
applications. In addition, MapReduce 
and Hadoop aren’t currently widely 
supported by data-intensive workflow 
systems, although there are some pre-
liminary efforts.16

Optimized Data Management across 
Datacenters
Several research efforts have integrated 
heterogeneous types of cloud storage 
services by providing a transparent in-
terface. However, these services and 
interfaces can’t guarantee that data 
is secured both in motion and at rest, 
don’t support automated ranking of 
competing storage services, and cannot 
handle uncertainties regarding cloud 
storage services and network routes. 

To process and store massive data-
sets across geographically distributed 
storage services while providing re-
quired quality of service (QoS) guaran-
tees raises several concerns. 

First, current cloud storage services 
aren’t secure by nature because of the 
inherent risk of data exposure, temper-
ing, and denial of data access. Ensuring 
data confidentiality, integrity, and avail-
ability is a great concern. 

Another issue concerns the intelli-
gence to automate the choice of the best 
storage services and network routes for 
optimal application QoS. Existing quanti-
tative criteria approaches applied optimi-
zation17 and performance measurement 
techniques18 for selecting cloud services. 
Other research focuses on static XML 
schema matching methods.19

The uncertainty of cloud storage 
services and network routes in a multiple 
datacenter environment is another major 
concern. Several reactive techniques rely 
on service state monitoring and action 
triggering to ensure QoS while adapting 
to run-time variation in resource loading 
and failures.20,21 Some QoS prediction 
methods such as the Network Weather 
Service use both monitoring and fore-
casting. Another proposed network 
QoS-aware approach uses QoS profiling, 
modelling, and prediction.22

Data-Intensive Workflow Computing
IoT applications typically require dis-
tributed processing of data as a work-
flow that spans across multiple data 
processing services and repositories. 
Several open source products exist for 
running data-intensive workflows. How-
ever, current systems suffer from some 
limitations. For example, there’s limited 
support for workflow walk across het-
erogeneous file systems, such as Lustre, 
HDFS, and GFarm. There’s also limited 
support for MapReduce task and sub-
workflow in data-intensive workflows 

across distributed datacenters. Finally, 
data storage and management servic-
es aren’t incorporated in the service-
oriented framework for data-intensive 
workflow systems.

Benchmark and Application Kernels 
Currently, there’s no agreement on 
available performance for executing 
large-scale IoT applications in distrib-
uted datacenters. Even worse, there 
are currently no intercenter benchmark 
and application kernels or standards for 
running large-scale IoT applications on 
distributed datacenters.

arge-scale IoT applications need to 
process and manage massive data-

sets across geographically distributed 
datacenters. These applications need 
to be provisioned across multiple data-
centers to exploit independent and geo-
graphically distributed data sources and 
IT infrastructure. The capability of ex-
isting data processing computing tools 
(for example, file systems, MapReduce, 
and workflow technologies), however, is 
optimized for single datacenter. Future 
research efforts will need to tackle the 
challenge of provisioning IoT applica-
tions across multiple datacenters by ex-
tending existing big data processing tools 
with the ability to process data across 
geographic locations; developing tech-
niques for ensuring security and privacy 
of sensitive data; and developing intel-
ligent techniques for application provi-
sioning based on cost, performance, and 
other QoS requirements.  
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