
he last few years have seen the emergence of a new
generation of distributed systems that scale over the
Internet, operate under decentralized settings, and

are dynamic in their behavior (participants can leave or join
the system). One such system is referred to as grid computing;
other similar systems include peer-to-peer (P2P) computing
[1], semantic Web [2], pervasive computing [3], and mobile
computing [4, 5]. Grid computing [6] provides the basic infra-
structure required for sharing diverse sets of resources,
including desktops, computational clusters, supercomputers,
storage, data, sensors, applications, and online scientific
instruments. Grid computing offers its vast computational
power to solve grand challenge problems in science and engi-
neering such as protein folding, high energy physics, financial
modeling, earthquake simulation, climate/weather modeling,
aircraft engine diagnostics, earthquake engineering, virtual
observatory, bioinformatics, drug discovery, digital image anal-
ysis, astrophysics, and multi-player gaming.

Grids can primarily be classified [7] into various types,

depending on the nature of their emphasis: computation,
data, application service, interaction, knowledge, and utility.
Accordingly, grids are proposed as the emerging cyber infra-
structure to power utility computing applications. Computa-
tional grids aggregate the computational power of globally
distributed computers (e.g., TeraGrid, ChinaGrid, and APAC-
Grid). Data grids emphasize global-scale management of data
to provide data access, integration, and processing through
distributed data repositories (e.g., LHCGrid, Gri-PhyN).
Application service (provisioning) grids focus on providing
access to remote applications and modules; libraries hosted on
data centers or computational grids (e.g., NetSolve and Grid-
Solve). Interaction grids focus on interaction and collaborative
visualization between participants (e.g., AccessGrid). Knowl-
edge grids aim toward knowledge acquisition, processing, and
management, and provide business analytics services driven by
integrated data mining services. Utility grids focus on provid-
ing all the grid services, including compute power, data, and
service to end users as IT utilities on a subscription basis, and
provide the infrastructure necessary for negotiation of
required quality of service, establishment and management of
contracts, and allocation of resources to meet competing
demands. To summarize, these grids follow a layered design

IEEE Communications Surveys & Tutorials • 2nd Quarter 20086

T

S U R V E Y S
I E E E
C O M M U N I C AT I O N S

RAJIV RANJAN, AARON HARWOOD AND RAJKUMAR BUYYA, THE UNIVERSITY OF MELBOURNE

ABSTRACT
An efficient resource discovery mechanism is one of the fundamental requirements
for grid computing systems, as it aids in resource management and scheduling of
applications. Resource discovery activity involves searching for the appropriate
resource types that match the user’s application requirements. Various kinds of solu-
tions to grid resource discovery have been suggested, including centralized and hier-
archical information server approaches. However, both of these approaches have
serious limitations in regard to scalability, fault tolerance, and network congestion. To
overcome these limitations, indexing resource information using a decentralized (e.g.,
peer-to-peer (P2P)) network model has been actively proposed in the past few years.
This article investigates various decentralized resource discovery techniques primarily
driven by the P2P network model. To summarize, this article presents a: summary of
the current state of the art in grid resource discovery, resource taxonomy with focus
on the computational grid paradigm, P2P taxonomy with a focus on extending the
current structured systems (e.g., distributed hash tables) for indexing d-dimensional
grid resource queries,1 a detailed survey of existing work that can support d-dimen-
sional grid resource queries, and classification of the surveyed approaches based on
the proposed P2P taxonomy. We believe that this taxonomy and its mapping to rele-
vant systems would be useful for academic and industry-based researchers who are
engaged in the design of scalable grid and P2P systems.

PEER-TO-PEER-BASED RESOURCE DISCOVERY

IN GLOBAL GRIDS: A TUTORIAL

2ND QUARTER 2008, VOLUME 10, NO. 2

www.comsoc.org/pubs/surveys

1553-877X

1 The article assumes that the reader has a basic understanding of
database indexing techniques.

IEEE Communications Surveys & Tutorials • 2nd Quarter 2008 7

with the computational grid being the bottom layer and the
utility grid the top layer. A grid at a higher level utilizes the
services of grids that operate at lower layers in the design. For
example, a data grid utilizes the services of a computational
grid for data processing and hence builds on it. In addition,
lower-level grids focus heavily on infrastructure aspects,
whereas higher-level ones focus on users and quality of service
delivery.

In this work, we mainly focus on computational grids.
Computational grids enable aggregation of different types of
computing resources including clusters, supercomputers, and
desktops. In general, computing resources have two types of
attributes:
• Static attributes such as the type of operating system

installed, network bandwidth (both local area network
[LAN] and wide area network [WAN] interconnection),
processor speed, and storage capacity (including physical
and secondary memory);

• Dynamic attributes such as processor utilization, physical
memory utilization, free secondary memory size, current
usage price, and network bandwidth utilization.

THE SUPERSCHEDULING PROCESS AND RESOURCE INDEXING

The grid superscheduling [8] problem is defined as: “schedul-
ing jobs across the Grid resources such as computational clus-
ters, parallel supercomputers, desktop machines that belong to
different administrative domains.” Superscheduling in computa-
tional grids is facilitated by specialized grid schedulers/brokers
such as the Grid Federation Agent [9], MyGrid [10], NASA-
Superscheduler [11], Nimrod-G [12], GridBus-Broker [13],
Condor-G [14], and workflow engines [15, 16]. Figure 1 shows
an abstract model of a decentralized superscheduling system
over a distributed query system. The superschedulers access
the resource information by issuing lookup queries. The
resource providers register the resource information through
update queries. Superscheduling involves:
• Identifying and analyzing a user’s job requirements;
• Querying a grid resource information service (GRIS) [17–22]

for locating resources that match the job requirements;

• Coordinating and negotiating a service level agreement
(SLA) [23–26];

• Job scheduling.
Grid resources are managed by their local resource manage-
ment systems (LRMSs) such as Condor [27], Portable Batch
System (PBS) [28], Sun Grid Engine (SGE) [29], Legion [30],
Alchemi [31], and Load Sharing Facility (LSF) [32]. The
LRMSs manage job queues, and initiate and monitor their
execution.

Traditionally, superschedulers [33], including Nimrod-G,
Condor-G, and Tycoon [34], used centralized information ser-
vices such as R-GMA [35], Hawkeye [36], GMD [20], and
MDS-1 [37] to index resource information. Under centralized
organization, the superschedulers send resource queries to a
centralized resource indexing service. Similarly, the resource
providers update the resource status at periodic intervals
using resource update messages. This approach has several
design issues, including:
• Highly prone to a single point of failure;
• Lacks scalability;
• High network communication cost at links leading to the

information server (i.e., network bottleneck, congestion);
• The machine running the information services might lack

the required computational power required to serve a
large number of resource queries and updates.
To overcome the above shortcomings of centralized

approaches, a hierarchical organization of information ser-
vices has been proposed in systems such as MDS-3 [19] and
Ganglia [38]. MDS-3 organizes virtual organization (VO) [6]
specific information directories in a hierarchy. A VO includes
a set of GPs that agree on common resource sharing policies.
Every VO in a grid designates a machine that hosts the infor-
mation services. A similar approach has been followed in the
Ganglia system, which is designed for monitoring resources
status within a federation of clusters. Each cluster designates
a node as a representative to the federated monitoring system.
This node is responsible for reporting cluster status to the fed-
eration. However, this approach also has similar problems to
the centralized approach such as one point of failure, and
does not scale well for a large number of users/providers.

■ Figure 1. Superscheduling and resource queries.

Users

Superscheduler

Superscheduler

Update

Site 3

LRMS

Update

Lookup

Lookup

Distributed
query system

Internet

Site 1

LRMS

Update

Site n

LRMS

Update

Site 2

LRMS

IEEE Communications Surveys & Tutorials • 2nd Quarter 20088

DECENTRALIZED RESOURCE INDEXING

Recently, proposals for decentralizing a GRIS have gained
significant momentum. The decentralization of GRIS can
overcome the issues related to current centralized and hierar-
chical organizations. A distributed system configuration is
considered as decentralized if none of the participants in the
system is more important than others, in case one of the partici-
pant fails, it is neither more or less harmful to the system than
the failure of any other participant in the system. An early pro-
posal for decentralizing grid information services was made by
Iamnitchi and Foster [18]. The work proposed a P2P-based
approach for organizing the MDS directories in a flat dynamic
P2P network. It envisages that every VO maintains its infor-
mation services and makes it available as part of a P2P-based
network. In other words, information services are the peers in
a P2P network-based coupling of VOs. Application schedulers
in various VOs initiate a resource lookup query that is for-
warded in the P2P network using flooding (an approach simi-

lar to one applied in the unstructured P2P network Gnutella)
[39]. However, this approach has a large volume of network
messages generated due to flooding. To avoid this, a time to
live (TTL) field is associated with every message (i.e., the
peers stop forwarding a query message once the TTL expires).
To an extent, this approach can limit the network message
traffic, but the search query results may not be deterministic
in all cases. Thus, the proposed approach cannot guarantee to
find the desired resource even though it exists in the network.

Recently, organizing a GRIS over structured P2P networks
has been widely explored. Structured P2P networks offer
deterministic search query results with logarithmic bounds on
network message complexity. Structured P2P lookup systems,
including Chord [40], CAN [41], Pastry [42], and Tapestry
[43], are primarily based on distributed hash tables (DHTs).
DHTs provide hash-table-like functionality on the Internet
scale. A DHT is a data structure that associates a key with
data. Entries in the DHT are stored as a (key, data) pair.

■ Figure 2. A centralized monitoring and directory sservice (MDS) organization.

Site 3

Site 1

MDS

Update

Lookup

Reply

Central
MDS

Superscheduler

Site 2

MDS

Update

Site n

MDS

Update

■ Figure 3. A hierarchical MDS organization.

Superscheduler

Lookup

Reply

MDS
Update

Update Update

Hierarchical
MDS

Site 5

Site 1 Site 2

Site 3 Site 4

MDS

MDS MDS

IEEE Communications Surveys & Tutorials • 2nd Quarter 2008 9

Data can be looked up within a logarithmic overlay routing
hop if the corresponding key is known.

It is widely accepted that DHTs are the building blocks for
next-generation large-scale decentralized systems. Some of the
example distributed systems that utilize the DHT routing sub-
strate include distributed databases [44], group communica-
tion [45], email services [46], resource discovery systems [21,
47–50], and distributed storage systems [51]. Current imple-
mentations of DHTs are known to be efficient for one-dimen-
sional queries [44] such as “find all resources that match the
given search point.” In this case distinct attribute values are
specified for resource attributes. Extending DHTs to support
d-dimensional range queries such as finding all resources that
overlap a given search space is a complex problem. Range
queries are based on range of values for attributes rather than
a specific value. Current works including [17, 21, 22, 48–50,
52–55] have studied and proposed different solutions to this
problem.

THE STATE OF THE ART IN GRID INFORMATION INDEXING

The work in [36] presents a comprehensive taxonomy on exist-
ing centralized and hierarchically organized GRISs. Figure 2
shows centralized GRISs based on Globus MDS-2/3. A cen-
tral server (at site 3) machine hosts the grid index information
service (GIIS) (a component MDS-2), while the remaining
grid sites run the GRIS. In Fig. 2 sites 1, 2, and n are running
instances of GRIS that periodically update their resource sta-
tus with the centralized GIIS. Figure 3 depicts a hierarchical
information service organization using Globus MDS-2/3. In
Fig. 3 sites 3 and 4 run the GRIS that connects to the GIIS
hosted at site 1. Note that site 1 hosts both the GIIS and
GRIS, and updates the information about its local resources
along with child GRISs with the root GIIS service hosted at
site 5.

We summarize this work here and classify existing systems
according to the proposed taxonomy in Table 1. The proposed
taxonomy is based on the grid monitoring architecture (GMA)
[70] put forward by the Global Grid Forum (GGF). The main
components of GMA are:
• Producer: a daemon that monitors and publishes resource

attributes to the registry;
• Consumer: superschedulers that query the registry for

resource information;
• Registry: a service or directory that allows publishing and

indexing of resource information;
• Republisher: any object that implements both producer

and consumer functionality;
• Schema repository: holds details such as type and schema

about different kinds of events that are ambient in a
GRIS.

Systems are identified depending on the provision and charac-
teristics of producers and republishers:
• Level 0 (self-contained systems): The resource consumers

are directly informed of various resource attribute
changes by the sensor daemon (a server program
attached to the resource for monitoring its status). The
notification process may take place in an offline or

online setting. In the online case the sensors
locally store the resource metrics, which can
be accessed in an application-specific way.
These systems normally offer a browsable
Web interface that provides interactive
access to HTML-formatted information.
These systems do not provide any kind of
producer application programming interface
(API), thus lacking any programming sup-

port that can enable automatic distribution of events to
remotely deployed applications. Systems including Map-
Center [56] and GridICE [57] belong to level 0 resource
monitoring systems.

• Level 1 (producer-only systems): Systems in this category
have event sensors hosted on the same machine as the
producer, or the sensor daemon functionality is provided
by the producer itself. Additionally, these systems pro-
vide an API at the resource level (producer level); hence,
they are easily and automatically accessible from remote
applications. In this case there is no need to browse
through the Web interface in order to gather resource
information. Systems including Autopilot [58] belong to
the level 1 category of monitoring systems.

• Level 2 (producers and republishers): This category of
system includes a republisher attached to each producer.
Republishers of different functionality may be stacked on
each other but only in a predefined way. The only differ-
ence from level 1 systems is the presence of a republisher
in the system. Systems including GridRM [60], CODE
[59], and Hawkeye are level 2 systems.

• Level 3 (hierarchies of republishers): This category of sys-
tem allows for the hierarchical organization of republish-
ers in an arbitrary fashion. This functionality is not
supported in level 2 systems. In this arrangement every
node collects and processes events from its lower-level
producers and republishers. These systems provide better
scalability than a level 0, 1, or 2 system. Systems such as
MDS-3 [19] belong to this category.
The taxonomy also proposes three other dimensions/quali-

fiers to characterize the existing systems. They include:
• Multiplicity: This qualifier refers to the scalability aspect

(organization of the republisher in a level 2 system) of a
GRIS. A republisher can be completely centralized or
distributed with support of replication.

• Type of entities: Denotes types of resources indexed by a
GRIS. Different resource types include hosts, networks,
applications, and generic. A generic resource type at
least supports event for hosts and network types.

• Stackable: Denotes whether the concerned GRIS can
work on top of another GRIS.

CONCEPTUAL DESIGN OF A
DISTRIBUTED RESOURCE INDEXING SYSTEM

A layered architecture to build a distributed resource indexing
system is shown in Fig. 4. The key components of an Internet-
based resource indexing system include:
• Resource layer: This layer consists of all globally distribut-

ed resources that are directly connected to the Internet.
The range of resources include desktop machines, files,
supercomputers, computational clusters, storage devices,
databases, scientific instruments, and sensor networks. A
computational resource can run variants of operating sys-
tems (e.g., UNIX or Windows) and queuing systems (e.g.,
Condor, Alchemi, SGE, PBS, LSF).

• Lookup layer: This layer offers core services for indexing
resources on the Internet scale. The main components at

■ Table 1. Summarizing centralized and hierarchical GRIS.

Level 0 Level 1 Level 2 Level 3

MapCenter [56],
GridICE [57]

Autopilot
[58]

CODE [59], GridRM [60],
Hawkeye [36], HBM [61],
Mercury [62], NetLogger
[63], NWS [64], OCM-G
[65], Remos [66],
SCALEA-G [67]

Ganglia [38],
Globus MDS
[19], MonALISA
[68], Paradyn
[69], RGMA [35]

IEEE Communications Surveys & Tutorials • 2nd Quarter 200810

this layer are the middleware that supports Internet-wide
resource lookups. Recent proposals at this layer have
been utilizing structured P2P protocols such as Chord,
CAN, Pastry, and Tapestry. DHTs offer deterministic
search query performance while guaranteeing logarithmic
bounds on the network message complexity. Other, mid-
dlewares at this layer includes JXTA [71], Grid Market
Directory (GMD), [20] and unstructured P2P substrates
such as Gnutella [39] and Freenet [72].

• Application layer: This layer includes the application ser-
vices in various domains, including grid computing, dis-
tributed storage, P2P networks, and content delivery
networks (CDNs) [73, 74]. Grid computing systems,
including Condor-Flock P2P [75], use services of Pastry
DHT to index condor pools distributed over the Internet.
Grid brokering system such as the Nimrod-G utilizes
directory services of Globus [76] for resource indexing
and superscheduling. The OurGrid superscheduling
framework incorporates JXTA for enabling communica-
tion between OGPeers in the network. Distributed stor-
age systems including PAST [77] and OceanStore [78]
utilize services of DHTs such as Pastry and Tapestry for
resource indexing.

ARTICLE ORGANIZATION

The rest of the article is organized as follows. First, we pre-
sent taxonomies related to general computational resources’

attributes, lookup queries, and organization model. Next, we
present taxonomies for P2P network organization, a d-dimen-
sional data distribution mechanism, and a query routing
mechanism. Then we summarize various algorithms that
model GRIS over a P2P network, and compare the surveyed
algorithms based on their scalability and index load balancing
capability. We discuss current grid and P2P systems’ security
approaches and their limitations, and provide a recommenda-
tion on utilizing the surveyed approaches in implementing a
resource discovery system. Finally, we end this article with a
discussion of open issues and a conclusion.

■ Figure 4. Distributed resource indexing: a layered approach.

Application layer

Look up layer

Internet

Resource layer

JXTA

GMD

MDS

Gnutella

Bittorent

Freenet
Chord

put(key, data)

CAN Pastry Tapestry

Distributed Hash Table

Akamai
MPI-G

Tycoon

Grid-Federation

OurGrid

Brokering
service PAST

Storage service

Oceanshore

Grid middleware

Condor P2P

Content delivery
networks

P2P file sharing

look-up(key) get(data)

■ Figure 5. Resource taxonomy.

Resource
taxonomy

Resource organization
taxonomy

Resource attribute
taxonomy

Resource query
taxonomy

RESOURCE TAXONOMY

The taxonomy for a computational grid resource is divided
into the following (Fig. 5): resource organization, resource
attribute, and resource query.

RESOURCE/GRIS ORGANIZATION TAXONOMY

The taxonomy defines GRIS organization as (Fig. 6):
• Centralized: Centralization refers to the allocation of all

query processing capability to a single resource. The
main characteristics of a centralized approach include
control and efficiency. All lookup and update queries are
sent to a single entity in the system. GRISs including
RGMA [35] and GMD [20] are based on centralized
organization.

• Hierarchical: A hierarchical approach links GRISs either
directly or indirectly, and either vertically or horizontally.
The only direct links in a hierarchy are from the parent
nodes to their child nodes. A hierarchy usually forms a
tree-like structure. GRIS systems including MDS-3 [19]
and Ganglia [38] are based on this network model.

• Decentralized: No centralized control; complete autono-
my, authority, and query processing capability are dis-
tributed over all resources in the system. The GRIS
organized under this model is fault-tolerant, self-organiz-
ing, and scalable to a large number of resources. More
details on this organization can be found later.
There are four fundamental challenges related to different

organization models: scalability, adaptability, availability, and
manageability. Centralized models are easy to manage but do
not scale well. When network links leading to the central serv-
er get congested or fail, performance suffers. Hence, this
approach may not adapt well to dynamic network conditions.
Furthermore, it presents a single point of failure, so
the overall availability of the system degrades con-
siderably. Hierarchical organization overcomes
some of these limitations, including scalability,
adaptability, and availability. However, these advan-
tages over a centralized model come at the cost of
overall system manageability. In this case every site-
specific administrator has to periodically ensure the
functionality of their local daemons. Furthermore,
the root node in the system may present a single
point of failure similar to the centralized model.
Decentralized systems, including P2P, are highly
scalable, adaptable to network conditions, and high-
ly available. But manageability is a complex task in
P2P networks as it incurs a lot of network traffic.

RESOURCE ATTRIBUTE TAXONOMY

A compute grid resource is described by a set of
attributes that is globally known to the application
superschedulers. A superscheduler interested in
finding a resource to execute a user’s job issues
queries to GRIS. The queries are a combination of
desired attribute values or their ranges, depending

on the user’s job composition. In general, computing resources
have two types of attributes, static and fixed value attributes,
such as type of operating system installed, network bandwidth
(both LAN and WAN interconnection), network location,
CPU speed, CPU architecture, software library installed, and
storage capacity (including physical and secondary memory);
and dynamic or range valued attributes such as CPU utiliza-
tion, physical memory utilization, free secondary memory size,
current usage price, and network bandwidth utilization. Figure
7 depicts the resource attribute taxonomy.

RESOURCE QUERY TAXONOMY

The ability of superschedulers such as MyGrid, Grid-Federa-
tion Agent, NASA-Superscheduler, Nimrod-G, and Condor-
Flock P2P to make effective application scheduling decisions
is directly governed by the efficiency of GRIS. Supersched-
ulers need to query a GRIS to compile information about
resource’s utilization, load, and current access price for for-
mulating efficient schedules. Furthermore, a superscheduler
can also query a GRIS for resources based on selected
attributes such as nodes with large amounts of physical and
secondary memory, inter-resource attributes such as network
latency, number of routing hops, or physical attributes such as
geographic location. Similarly, the resource owners query a
GRIS to determine supply and demand patterns and set the
price accordingly. The actual semantics of the resource query
depends on the underlying grid superscheduling model or grid
system model.

Resource Query Type — Superscheduling systems require
two basic types of queries: resource lookup query (RLQ) and
resource update query (RUQ). An RLQ is issued by a super-
scheduler to locate resources matching a user’s job require-
ments, while an RUQ is an update message sent to a GRIS by
a resource owner about the underlying resource conditions. In
the Condor-Flock P2P system, flocking requires sending
RLQs to remote pools for resource status and the willingness
to accept remote jobs. Willingness to accept remote jobs is a
policy-specific issue. After receiving an RLQ message, the
contacted pool manager replies with an RUQ that includes
the job queue length, average pool utilization, and number of
resources available. Distributed flocking is based on the P2P

IEEE Communications Surveys & Tutorials • 2nd Quarter 2008 11

■ Figure 6. Resource organization taxonomy.

Centralized

GRIS organization Hierarchical

Decentralized

■ Figure 7. Resource attribute taxonomy.

Dynamic Static

Queue length

CPU utilization

CPU architecture

Physical memory
size

Operating system

CPU speed

Software installed

Secondary memory
size

Network bandwidth

Network location

Physical memory
utilization

Secondary memory
utilization

Network bandwidth
utilization

Resource access cost

Resource
attribute

query mechanism. Once the job is migrated to the remote
pool, a basic matchmaking [79] mechanism is applied for
resource allocation. In Table 2 we present RLQ and RUQ
queries in some well-known superscheduling systems.

An Example Superscheduling Resource Query — In this
section we briefly analyze the superscheduling query composi-
tion in the superscheduling system called Tycoon [34]. The
Tycoon system applies market-based principles, in particular
an auction mechanism, for resource management. Auctions
are completely independent without any centralized control.
Every resource owner in the system coordinates its own auc-
tion for local resources. The Tycoon system provides a cen-
tralized service location service (SLS) for superschedulers to
index resource auctioneers’ information. Auctioneers register
their status with the SLS every 30 s. If an auctioneer fails to
update its information within 120 s, the SLS deletes its entry.
Application-level superschedulers contact the SLS to gather
information about various auctioneers in the system. Once
this information is available, the superschedulers (on behalf of
users) issue bids for different resources (controlled by differ-
ent auctions), constrained by resource requirements and avail-
able budget. A resource bid is defined by the tuple (h, r, b, t)
where h is the host to bid on, r is the resource type, b is the
number of credits to bid, and t is the time interval over which
to bid. Auctioneers determine the outcome by using a bid-
based proportional resource sharing economy model.

Auctioneers in the Tycoon superscheduling system send an
RUQ to the centralized GRIS (referred to as SLS). The
update message consists of the total number of bids currently
active for each resource type and the total amount of each
resource type available (e.g., CPU speed, memory size, disk
space). An auctioneer’s RUQ has the following semantics:

total bids = 10 && CPU Arch = “pentium” && CPU Speed
= 2 GHz && Memory = 512

Similarly, the superscheduler, on behalf of the Tycoon
users, issues an RLQ to the GRIS to acquire information
about active resource auctioneers in the system. A user
resource lookup query has the following semantics:

return auctioneers whose CPU Arch = “i686” && CPU
Speed ≥ 1 GHz && Memory ≥ 256

In Fig. 8 we present the taxonomy for GRIS RLQ and
RUQ. In general, the queries [80] can be abstracted as
lookups for objects based on a single dimension or multiple
dimensions. Since a grid resource is identified by more than
one attribute, an RLQ or RUQ is always d-dimensional. Fur-
thermore, both the one-dimensional and d-dimensional
queries can specify different kinds of constraints on the
attribute values. If the query specifies a fixed value for each
attribute, it is referred to as a d-dimensional point query

IEEE Communications Surveys & Tutorials • 2nd Quarter 200812

■ Figure 8. Resource query taxonomy.

Single dimension

Exact match

Query

Range queries Partial match Boolean queries

Multiple dimension

■ Table 2. Resource query in superscheduling systems.

System name Resource lookup query Resource update qquery GRIS model

Condor-Flock P2P Query remote pools in the routing table for
resource status and resource sharing policy

Queue length, average pool utilization and
number of resources available Decentralized

Grid-Federation

Query decentralized federation directory for
resources that matches user’s job QoS requirement
(CPU architecture, no. of processors, available
memory, CPU speed)

Update resource access price and resource
conditions (CPU utilization, memory, disk
space, no. of free processors)

Decentralized

Nimrod-G Query GMD or MDS for resources that matches
jobs resource and QoS requirement

Update resource service price and resource
type available Centralized

Condor-G

Query for available resource using Grid Resource
Information Protocol (GRIP), then individual
resources are queried for current status depending
on superscheduling method

Update resource information to MDS using
GRRP Centralized

Our-Grid MyPeer queries OGPeer for resources that match
user’s job requirements

Update network of favors credit for Our-
Grid sites in the community Decentralized

Gridbus Broker Query GMD or MDS for resources that matches
jobs resource and QoS requirement

Update resource service price and resource
type available Centralized

Tycoon Query for auctioneers that are currently accepting
bids and matches user’s resource requirement

Update number of bids currently active
and current resource availability condition Centralized

Bellagio
Query for resources based on CPU load, available
memory, internode latency, physical and logical
proximity

Update resource conditions including CPPU
, memory and network usage status Decentralized

Mosix-Grid Information available at each node through gos-
siping algorithm

Update CPU usage, current load, memory
status and network status Hierarchical

IEEE Communications Surveys & Tutorials • 2nd Quarter 2008 13

(DPQ). However, if the query specifies a range of values for
attributes, it is referred to as a d-dimensional window query
(DWQ) or d-dimensional range query (DRQ). Depending on
how values are constrained and searched for, these queries
are classified as:
• Exact match query: The query specifies the desired values

for all resource attributes sought. For example, Architec-
ture = ‘x86’ and CPU-Speed = ‘3 Ghz’ and type =
‘SMP’ and price = ‘2 Grid dollars per second’ and RAM
= ‘256 MB’ and no. of processors = 10 and Secondary
free space = ‘100 MB’ and Interconnect bandwidth = ‘1
GB/s’ and OS = ‘linux’ (multiple-dimension exact match
query).

• Partial match query: Only selected attribute values are
specified. For example, Architecture = ‘sparc’ and type
= ‘SMP’ and no. of processors = 10 (multiple-dimension
partial match query).

• Range queries: Range values for all or some attributes
are specified. For example, Architecture = ’Macintosh’
and type = ’Cluster’ and ‘1 GHz’ ≤ CPU-Speed ≤ ‘3
GHz’ and ‘512MB’ ≤ RAM ≤ ‘1 GB’ (multiple-dimension
range query).

• Boolean queries: All or some attribute val-
ues satisfying certain boolean conditions,
such as not RAM ≤ ‘256 MB’ and not no.
of processors ≤ 5 (multiple-dimension
boolean query).

P2P TAXONOMY

The taxonomy for P2P-based GRIS is divided
into the following (Fig. 9): P2P network organi-
zation, data organization, and d-dimensional
query routing organization.

P2P NETWORK ORGANIZATION

The network organization refers to how peers
are logically structured from the topological
perspective. Figure 10 shows the network orga-
nization taxonomy of general P2P systems. Two
categories are proposed in P2P literature [1]:
unstructured and structured. An unstructured
system is typically described by a power law ran-
dom graph model [81, 82], as peer connections
are based on the popularity of content. These
systems do not put any constraints on placement
of data items on peers and how peers maintain
their network connections. Detailed evaluation
and analysis of network models [83, 84] for
unstructured systems can be found in [85].
Unstructured systems including Napster,

Gnutella, and Kazaa offer differing degrees of decentraliza-
tion. The degree of decentralization refers to the extent peers
can function independently with respect to efficient object
lookup and query routing. Our taxonomy classifies unstruc-
tured systems as deterministic or nondeterministic [85].

A deterministic system means that a lookup operation will
be successful within predefined bounds. Systems including
Napster and BitTorrent fall into this category. In these sys-
tems the object lookup operation is centralized while down-
load is decentralized. Under centralized organization, a
specialized (index) server maintains the indexes of all objects
in the system (e.g., Napster, BitTorrent). The resource queries
are routed to index servers to identify the peers currently
responsible for storing the desired object. The index server
can obtain the indexes from peers in one of the following
ways:
• Peers directly inform the server about the files they are

currently holding (e.g., Napster).
• By crawling the P2P network (an approach similar to a

Web search engine).
The lookup operations in these systems are deterministic and
resolved with a complexity of O(1). We classify JXTA as an
unstructured P2P system that offers deterministic search per-
formance. At the lowest level JXTA is a routing overlay, not
unlike routers that interconnect to form a network. Hence
there is no structure, but there is a routing algorithm that
allows any router to router communication. In JXTA both
object lookup and download operations are completely decen-
tralized.

Other unstructured systems, including Gnutella, Freenet,
FastTrack, and Kazaa, offer nondeterministic query perfor-
mance. Unlike Napster or BitTorrent, both object lookup and
download operation in these systems are decentralized. Each
peer maintains indexes for the objects it is currently holding.
In other words, indexes are completely distributed. The

■ Figure 9. Peer-to-peer network taxonomy.

P2P
taxonomy

P2P network
organization

Data
organization

d-dimensional
Query routing

■ Figure 10. Peer-to-peer network organization taxonomy.

Napster

JXTA

Kazaa

DHT

Gnutella

BitTorrent

P2P
network

Unstructured

Deterministic

Non-
deterministic

Structured

Hybrid

Non-DHT

CAN

CHORD

Tapestry

Pastry

Kademlia

Mercury

Kelip

Structella

Gnutella system employs a query flooding model for routing
object queries. Every request for an object is flooded (broad-
cast) to directly connected peers, which in turn flood their
neighboring peers. This approach is used in the GRIS model
proposed by [18]. Every RLQ message has a TTL field associat-
ed with it (i.e., maximum number of flooding hops/steps
allowed). Drawbacks for flood-based routing include high net-
work communication overhead and nonscalability. This issue is
addressed to an extent in FastTrack and Kazaa by introducing
the notion of super-peers. This approach reduces network over-
head but still uses a flooding protocol to contact super-peers.

Structured systems such as DHTs offer deterministic query
search results within logarithmic bounds on network message
complexity. Peers in DHTs such as Chord, CAN, Pastry, and
Tapestry maintain an index for O(log (n)) peers, where n is
the total number of peers in the system. Inherent to the
design of a DHT are the following issues [86]:
• Generation of node-ids and object-ids, called keys, using

cryptographic/randomizing hash functions such as SHA-1
[87–89]. The objects and nodes are mapped on the over-
lay network depending on their key value. Each node is
assigned responsibility for managing a small number of
objects.

• Building up routing information (routing tables) at vari-
ous nodes in the network. Each node maintains the net-
work location information of a few other nodes in the
network.

• An efficient lookup query resolution scheme. Whenever a
node in the overlay receives a lookup request, it must be
able to resolve it within acceptable bounds such as in
O(log (n)) time. This is achieved by routing the lookup
request to the nodes in the network that are most likely
to store the information about the desired object. Such
probable nodes are identified by using the routing table
entries.

Although at the core various DHTs (Chord, CAN, Pastry,
etc.) are similar, there are still substantial differences in the
actual implementation of algorithms, including the overlay
network construction (network graph structure), routing table
maintenance, and node join/leave handling. The performance
metrics for evaluating a DHT include fault tolerance, load
balancing, efficiency of lookups and inserts, and proximity
awareness [90, 91]. In Table 3, we present a comparative anal-
ysis of Chord, Pastry, CAN and Tapestry based on basic per-
formance and organization parameters. Comprehensive
details about the performance of some common DHTs under
churn can be found in [92].

Other classes of structured systems such as Mercury do not
apply randomizing hash functions for organizing data items
and nodes. The Mercury system organizes nodes into a circu-
lar overlay and places data contiguously on this ring. As Mer-
cury does not apply hash functions, data partitioning among
nodes is nonuniform. Hence, it requires an explicit load bal-
ancing scheme. In recent developments new-generation P2P

IEEE Communications Surveys & Tutorials • 2nd Quarter 200814

■ Table 3. Summary of the complexity of structured P2P systems.

P2P
system Overlay structure Lookup protocol Network parameter Routing table

size
Routing
complexity

Join/leave
overhead

Chord 1-dimensional,
circular-ID space

Matching key and
NodeID

n = number of nodes in
the network O(log(n)) O(log(n)) O((log(n))2)

Pastry Plaxton style mesh
structure

Matching key and
prefix in NodeID

n = number of nodes in
the network, b = base of
the identifier

O(logb(n)) O(b logb(n)+b) O(log(n))

CAN d-dimensional ID
space

key, value pairs
map to a point P
in the d-dimen-
sional space

n = number of nodes in
the network, d = number
of dimensions

O(2 d) O(d n1/d) O(2 d)

Tapestry Plaxton style mesh
structure

Matching suffix
in NodeID

n = number of nodes in
the network, b = base of
the identifier

O(logb(n)) O(b logb(n)+b) O(log(n))

■ Table 4. Classification based on P2P routing substrate.

Routing substrate Network
organization Distributed indexing algorithm name

Chord Structured PHT [54], MAAN [17], Dgrid [49], Adaptive [97], DragonFly [98], QuadTree [99], Pub/Sub-2
[100], P-tree [52], Squid [21]

Pastry Structured XenoSearch [55], AdeepGrid [48], Pub/Sub-1 [101]

CAN Structured HP-protocol [22], Kd-tree [102], Meghdoot [103], Zcurve [102], Super-P2P R*-Tree [104]

Bamboo Structured SWORD [50]

Epidemic-DHT [95] Hybrid XenoSearch-II [96]

Others Unstructured Mercury [53], JXTA search [105], P2PR-tree [106]

IEEE Communications Surveys & Tutorials • 2nd Quarter 2008 15

systems have evolved to combine both unstructured and struc-
tured P2P networks. We refer to this class of systems as
hybrid. Structella [93] is one such P2P system that replaces
the random graph model of an unstructured overlay (Gnutel-
la) with a structured overlay, while still adopting the search
and content placement mechanism of unstructured overlays to
support complex queries. Other hybrid P2P designs include
Kelips [94] and its variants. Nodes in a Kelips overlay periodi-
cally gossip to discover new members of the network, and dur-
ing this process nodes may also learn about other nodes as a
result of lookup communication. Another variant of Kelips
[95] allows routing table entries to store information for every
other node in the system. However, this approach is based on
the assumption that the system experiences low churn rate
[92]. Gossiping and a one-hop routing approach have been
used for maintaining the routing overlay in the work [96]. In
Table 4 we summarize the different P2P routing substrates
utilized by the existing algorithms for organizing a GRIS.

DATA ORGANIZATION TAXONOMY

Traditionally, DHTs have been efficient for one-dimensional
queries such as finding all resources that match the given
attribute value. Extending DHTs to support DRQs to index
all resources whose attribute values overlap a given search
space, is a complex problem. DRQs are based on ranges of
values for attributes rather than specific values. Compared to
one-dimensional queries, resolving DRQs is far more compli-
cated, as there is no obvious total ordering of the points in the
attribute space. Furthermore, the query interval has varying
size, aspect ratio, and position, such as a window query. The
main challenges involved in enabling DRQs in a DHT net-
work [102] include efficient:
• Data distribution mechanisms;
• Data indexing or query routing techniques.
In this section we discuss various data distribution mecha-
nisms; we analyze data indexing techniques in the next sec-
tion.

A data distribution mechanism partitions the d-dimension-
al [107, 108] attribute space over the set of peers in a DHT
network. Efficiency of the distribution mechanism directly
governs how the query processing load is distributed among
the peers. A good distribution mechanism should possess the
following characteristics [102]:
• Locality: Tuples or data points nearby in the attribute

space should be mapped to the same node, hence limit-
ing the lookup complexity.

• Load balance: The number of data points indexed by
each peer should be approximately the same to ensure
uniform distribution of query processing [109, 110].

• Minimal metadata: Prior information required for map-
ping the attribute space to the peer space should be min-
imal.

• Minimal management overhead: During peer join and
leave operation, update policies such as the transfer of
data points to a newly joined peer should cause minimal
network traffic.
In the current P2P literature (see the next section) d-

dimensional data distribution mechanisms based on the fol-
lowing structures have been proposed (Fig. 12): space filling
curves, tree-based structures, and a variant of SHA-1/2 hash-
ing. In Table 5 we summarize various data structures used in
different algorithms for d-dimensional data distribution. Fur-
thermore, in Table 6 we present a classification of the existing
algorithms based on the number of routing overlays utilized
for managing d-dimensional data.

The space filling curves (SFCs) data structure [111, 112]
includes the Z-curve [113] and Hilbert’s curve [114]. SFCs map
the given d-dimensional attribute space into a one-dimensional
space. The work in [22] utilizes SFCs, in particular the reverse
Hilbert SFC for mapping a one-dimensional attribute space to
a two-dimensional CAN P2P space. Similarly, the work in [21]
uses the Hilbert SFC to map a d-dimensional index space into
a one-dimensional space. The resulting one-dimensional index-
es are contiguously mapped on a Chord P2P network. The
approach proposed in [102] utilizes Z-curves for mapping a d-
dimensional space to a one-dimensional space. SFCs exhibit
the locality property by mapping the points that are close in d-
dimensional space to adjacent spaces in the one-dimensional
space. However, as the number of dimensions increases, locali-
ty becomes worse since SFCs suffer from the “curse of dimen-
sionality” [115]. Furthermore, SFC-based mapping fails to
uniformly distribute the load among peers if the data distribu-
tion is skewed. Hence, this leads to a nonuniform query pro-
cessing load for peers in the network.

Some recent work [52, 54, 97, 99] utilizes tree-based data
structures for organizing the data. The approach proposed in
[99] adopts the MX-CIF quadtree [116] index for P2P net-
works. A distributed quadtree index assigns regions of space
(a quadtree block) to the peers. If the extent of a spatial
object goes beyond a quadtree block, recursive subdivision of
that block can be performed. With a good base hash func-
tion one can achieve a uniform random mapping of the
quadtree blocks to the peers in the network. This approach
will map two quadtree blocks that are close to each other to
totally different locations on the Chord space. Another
recent work called DragonFly [98] uses the same base algo-
rithm with an enhanced load balancing technique called
recursive bisection [117]. Recursive bisection works by divid-
ing a cell/block recursively into two halves until a certain
load condition is met. The load condition is defined based
on two load parameters known as the load limit and load
threshold. Hence, this approach has better load balancing
properties than the SFC-based approaches in the case of a
skewed data set.

Figure 11 depicts the index space organization and map-
ping to the Chord overlay in the DragonFly publish/subscribe
system. DragonFly builds a d-dimensional Cartesian space
based on the grid resource attributes, where each attribute
represents a single dimension. The logical d-dimensional
index assigns regions of space to the peers. If a peer is
assigned a region (index cell) in the d-dimensional space, it is
responsible for handling all activities related to the subscrip-
tion and publication associated with the region. Each cell is
uniquely identified by its centroid, called the control point.
Figure 11 depicts some control points and some example
hashings in a two-dimensional attribute space using the Chord
method.

Other approaches including [17, 49] manipulate existing
SHA-1/2 hashing for mapping d-dimensional data to the
peers. MAAN addresses the one-dimensional range query
problem by mapping attribute values to the Chord identifier
space via a uniform locality preserving hashing scheme. A
similar approach is also utilized in [100]. However, this
approach shows poor load balancing characteristics when the
attribute values are skewed.

To conclude, the choice of data structure is directly gov-
erned by the data distribution pattern. A data structure that
performs well for a particular data set may not do the same if
the distribution changes. Additional techniques such as peer
virtualization (as proposed in Chord) or multiple realities (as
proposed in CAN) may be utilized to improve the query pro-
cessing load.

IEEE Communications Surveys & Tutorials • 2nd Quarter 200816

■ Table 5. Classification based on data structure applied for enabling ranged search and lookup complexity.

Algorithm name Data structure Lookup complexity

PHT [54] Trie O(log |D|); D is the total number of bits in the binary string representation,
for 1-dimensional range query

MAAN [17] Locality preserving hashing
O(n × log n + n × smin), smin is the minimum range selectivity per dimension; n
total peers

Dgrid [49] SHA-1 hashing O(log2 Y) for each dimension, Y is the total resource type in the system

SWORD [50] N/A N/A

JXTA search [105] RDBMS N/A

DragonFly [98] QuadTree

O(E[K] × (log2n + fmax – fmin)) ; n is the total peers in the network; fmax is the
maximum allowed depth of the tree, fmin is the fundamental minimum level,
E[K] is the mean number disjoint path traversed for a window query, its distri-
bution is function of the query size

QuadTree [99] QuadTree

O(E[K] × (log2n + fmax – fmin)) ; n is the total peers in the network; fmax is the
maximum allowed depth of the tree, fmin is the fundamental minimum level,
E[K] is the mean number disjoint path traversed for a window query, its distri-
bution is function of the query size

Pub/Sub-2 [100] Order preserving hashing
1/2 × O(log n); Equality query, n is total peers, 1/2 × O(ns log n, ns is step fac-
tor; for ranged query, in a 1-dimensional search space

P-tree [52] Distributed B-+ tree
O(m + logd n); n is total peers, m is number of peers in selected range, d is
order of the 1-dimensional distributed B-tree

Pub/Sub-1 [101] SHA-1 hashing
O(nr log n); n is total peers, nr is the number of range intervals searched in a
1-dimensional search space

XenoSearch [55] SHA-1 hashing N/A

XenoSearch-II [96] Hilbert space filling curve N/A

AdeepGrid [48] SHA-1 hashing N/A

HP-protocol [22] Reverse hilbert space filling curve N/A

Squid [21] Hilbert space filling curve
nc × O(log n); nc is the total no. of isolated index clusters in the SFC based
search index space, n is the total number of peers

Mercury [53] N/A O((log n)/k); k Long distance links; n is total peers, in a 1-dimensional search
space

Adaptive [97] Range search tree O(logRq); Rq is range selectivity, in a 1-dimensional search space

Kd-tree [102] Kd-tree, skip pointer based on
skip graphs N/A

Meghdoot [103] SHA-1 hashing O(dn1/d), n is the total peers in the network, d is the dimensionality of CAN
space

Z-curve [102] Z-curves, skip pointer based on
skip graphs N/A

P2PR-tree [106] Distributed R-tree N/A

Super-P2P R*-Tree
[104] Distributed R*-tree

O(E[k] × (d/4)(n1/d)); E[k] is the mean number of MBRs indexed per range
query or NN query, d is the dimensionality of the indexed/CAN space, n is the
number of peers in the system.

IEEE Communications Surveys & Tutorials • 2nd Quarter 2008 17

D-DIMENSIONAL QUERY ROUTING TAXONOMY

DHTs guarantee deterministic query lookup with logarithmic
bounds on network message cost for one-dimensional queries.
However, grid RLQs are normally DPQs or DRQs. Hence,
existing routing techniques need to be augmented in order to
efficiently resolve a DRQ. Various data structures discussed
in the previous section effectively create a logical d-dimen-
sional index space over a DHT network. A lookup operation
involves searching for an index or set of indexes in a d-dimen-
sional space. However, the exact query routing path in the d-
dimensional logical space is directly governed by the data
distribution mechanism (i.e., based on the data structure that
maintains the indexes). In this context various approaches
have proposed different routing/indexing heuristics. An effi-
cient query routing algorithm should exhibit the following
characteristics [102]:
• Routing load balance: Every peer in the network on aver-

age should route forward/route approximately the same
number of query messages.

• Low per-node state: Each peer should maintain a small
number of routing links, hence limiting new peer join
and peer state update cost. In Table 5, we summarize the
query lookup complexity involved with the existing algo-
rithms.
Resolving a DRQ over a DHT network that utilizes SFCs

for data distribution consists of two basic steps [21]: mapping
the DRQ onto the set of relevant clusters of SFC-based index

space and routing the message to all peers that
fall under the computed SFC-based index space.
The simulation-based study proposed in [102] has
shown that SFCs (Z-curves) incur constant rout-
ing costs irrespective of the dimensionality of the
attribute space. Routing using this approach is
based on a skip graph, where each peer maintains
O(log(n)) additional routing links in the list.
However, this approach has serious load balanc-
ing problems that need to be fixed using external
techniques [118].

Routing DRQs in DHT networks that employ tree-based
structures for data distribution requires routing to start from
the root node. However, the root peer presents a single point
of failure and load imbalance. To overcome this, the authors
in [99] introduced the concept of a fundamental minimum
level. This means that all query processing and data storage
should start at the minimal level of the tree rather than at the
root. Another approach [102] utilizes a P2P version of a Kd-
tree [119] for mapping d-dimensional data onto a CAN P2P
space. The routing utilizes the neighboring cells of the data
structure. The nodes in this network that manage a dense
region of space are likely to have large numbers of neighbors,
hence leading to an unbalanced routing load. An example
routing for this approach is shown in Fig. 13, where a query is
routed from a node labeled A to its destination marked as X.
Note that each node in the CAN space must know the parti-
tion boundaries of each of its neighbors for routing purposes.

Other approaches based on variants of standard hashing
schemes (e.g., MAAN) apply different heuristics for resolving
range queries. The single-attribute query dominated routing
(SAQDR) heuristic abstracts resource attributes into two cat-
egories: dominant and nondominant attributes. The underly-
ing system queries for the node that maintains the index
information for the dominant attribute. Once such a node is
found, the node searches its local index information looking at
satisfying the values for other nondominant attributes in the
DRQ. The request is then forwarded to the next node, which

■ Figure 11. Spatial subscriptions {W, X, Y, Z}, cell control points, point publications {M, N}, and some of the hashings to the Chord,
that is, the 2-dimensional coordinate values of a cell's control point is used as the key and hashed onto the Chord. Dark dots are the
peers that are currently part of the network. Light dots are the control points hashed on the Chord.

B

2t-1 0

peer t

BA BB

D

O

C

A

Subscription W

Subscription X

Diagonal
hyperplane

Subscription YPublication N

Publication M

Subscription Z

peer v

peer s

peer u

■ Table 6. Classification based on no. of routing overlays for d-dimensional
search space.

Single Multiple

JXTA search [105], DragonFly [98],
XenoSearch-II [96], SWORD [50],
Squid [21], Kd-tree [102], Meghdoot
[103], Zcurve [102], QuadTree [99],
P2PRtree [106], AdeepGrid [48],
Super-P2P R*-Tree [104], Dgrid [49]

PHT [54], MAAN [17], Adaptive [97],
Pub/Sub-2 [100], P-tree [52],
XenoSearch [55], Pub/Sub-1 [101],
Mercury [53], HPPROTOCOL [22]

IEEE Communications Surveys & Tutorials • 2nd Quarter 200818

indexes the subsequent range value for the dominant attribute.
This approach comprehensively reduces the number of rout-
ing steps needed to resolve a DRQ. However, this approach
suffers from routing load imbalance in the case of a skewed
attribute space. In Table 7 we present a classification of the
existing algorithms based on query resolution heuristic and
data locality preserving characteristics.

SURVEY OF P2P-BASED

GRID INFORMATION INDEXING

PASTRY-BASED APPROACHES

Pub/Sub-1: Building Content-Based Publish/Subscribe
Systems with Distributed Hash Tables — The content-
based publish/subscribe (Pub/Sub) system [101] is built using a
DHT routing substrate. They use the topic-based Scribe [45]
system which is implemented using Pastry [42]. The model
defines different schema for publication and subscription mes-
sages for each application domain (e.g., a stock market or an
auction market). The proposed approach is capable of han-
dling multiple domain schema simultaneously. Each schema
includes several tables, each with a standard name. Each table
maintains information about a set of attributes, including their
type, name, and constraints on possible values. Furthermore,
there is a set of indices defined on a table, where each index is
an ordered collection of strategically selected attributes. The
model requires application designers to manually specify the
domain scheme.

When a request (publication or subscription) is submitted
to the system, it is parsed for various index digests. An index
digest is a string of characters that is formed by concatenating
the attribute type, name, and value of each attribute in the
index. An example index digest is [USD : Price : 100 : Inch :
Monitor : 19 : String : Quality : Used]. Handling publication/sub-
scription with exact attribute values is straightforward as it
involves hashing the published request or subscription request.
When a publication with attribute values that match a sub-
scription is submitted to the system, it is mapped to the same
hash key as the original subscription. When such Pub/Sub
event matching occurs, the subscribing node is notified accord-
ingly. The model optimizes the processing of popular subscrip-
tion (many nodes subscribing for an event) by building a
multicast tree of nodes with the same subscription interest.
The root of the tree is the hash key’s home node (the node at
which publication and subscription requests are stored in the
network), and its branches are formed along the routes from
the subscriber nodes to the root node.

The system handles range values by building a separate
index hash key for every attribute value in the specified range.
This method has serious scalability issues. The proposed
approach to overcome this limitation is to divide the range of
values into intervals and a separate hash key is built for each
such index digest representing that interval. However, this
approach can only handle range values of a single attribute in
an index digest (does not support multi-attribute range values
in a single index digest).

XenoSearch: Distributed Resource Discovery in the
XenoServer Open Platform — XenoSearch [55] is a resource

■ Figure 12. Data structure taxonomy.

Hashing
technique

Space filling
curves

Data structure

Locality preserving
hashing

Order preserving
hashing

Hilbert

Z-curve

Tree-based
structure

Single
dimensional

Prefix hash
tree

Range search
tree

P-tree

Space
driven

Data
driven

Multi
dimensional

Quad tree

KD tree

R tree

IEEE Communications Surveys & Tutorials • 2nd Quarter 2008 19

discovery system built for the XenoServer [120] execution
platform. The XenoServer system is an Internet-based
resource sharing platform that allows users to run programs at
topologically distributed nodes. The XenoSearch indexes the
resource information that is advertised periodically by the
XenoServers. An advertisement contains information about
the identity, ownership, location, resource availability, and
access prices of a XenoServer. The XenoSearch system con-
verts these advertisements to points in a d-dimensional space,
wherein different dimensions represent different attributes
(topological location, QoS attributes, etc.). The XenoSearch
system is built over the Pastry [42] overlay routing protocol.

A separate Pastry ring operates for each dimension with
XenoSearch nodes registering separately in each ring. A
XenoServer registers for each dimension and derives the over-
lay key by hashing its coordinate position in that dimension.
Effectively, in different dimensions a XenoServer is indexed
by different keys. In each dimension the resource information
is logically held in the form of a tree where the leaves are the
individual XenoServers and interior nodes are aggregation
points (APs) that summarize the membership of ranges of
nodes below them. These APs are identified by locations in
the key space that can be determined algorithmically by form-
ing keys with successively longer suffixes. The XenoSearch
node closest in the key space to an AP is responsible for man-
aging this information and dealing with messages it receives.
This locality in search is provided by the proximity-aware
routing characteristic of the Pastry system. The d-dimensional
range searches are performed by making a series of search
requests in each dimension and finally computing their inter-
section.

Recently, XenoSearch has been enhanced with a new
search and data placement technique [96]. The new approach
puts emphasis on both the location and resource constraints
associated with a search entity. Location constraints are
defined using the primitives of disjunction ((), conjunction (∋),
proximity (near(A1, A2, …, An)), Ai denotes the ith resource
attribute, distribution (near(A1, A2, …, An)), terms represent-
ing fixed locations (e.g., clients’ positions in the network) and
free servers to locate (i.e., the resource request terms to be
matched to machines). A quadtree-based [116] data structure
is used for the centralized implementation and an
epidemic/gossip-based distributed data structure for the dis-
tributed resource discovery system. Gossip techniques between
peer nodes separate the maintenance and distribution of sum-

maries from the implementation of the algorithm. Nodes
determine the network location of the indexed machines by
using a coordinate location system [121]. These d-dimensional
coordinates are then mapped to a one-dimensional linear
index space using the Hilbert SFC.

AdeepGrid: Peer-to-Peer Discovery of Computational
Resources for Grid Applications — AdeepGrid [48] pre-
sents an algorithm for grid resource indexing based on the
Pastry DHT. The proposed GRIS model incorporates both
static and dynamic resource attributes. A d-dimensional
attribute space (with static and dynamic attributes) is mapped
to a DHT network by hashing the attributes. The resulting key
forms a Resource ID, which is also the key for the Pastry ring.
The key size is 160 bits long as compared to 128 bits in the
standard Pastry ring. In this case the first 128 bits are used to
encode the static attributes, while the remaining 32 bits for
the dynamic attributes. The static part of the Resource ID is
mapped to a fixed point, while the dynamic part is represent-
ed by potentially overlapping arcs on the overlay. The begin-
ning of each arc represents a resource’s static attribute set,
while the length of the arc signifies the spectrum of the
dynamic states a resource can exhibit. Effectively, the circular
node Id space contains only a finite number of nodes, while
they store an infinite number of objects representing dynamic
attributes. RUQs can be periodically initiated if the dynamic
attribute value changes by a significant amount (controlled by
a system-wide UCHANGE parameter). Such updates are car-
ried out using an UPDATE message primitive. However, in
some cases the new update message may map to a different
node (due to a change in an attribute value) as compared to
the previous INSERT or UPDATE. This can lead to defunct
objects in the system. The proposed approach overcomes this
by making nodes periodically flush resource entries that have
not changed recently or sending REMOVE messages to prior
node mappings.

Resolving RLQ involves locating the node that currently
hosts the desired resource attributes (Resource ID). This is
accomplished by utilizing standard Pastry routing. Three dif-
ferent heuristics for resolving the RLQs are proposed: single-
shot searching, recursive searching, and parallel searching.
Single-shot searching is applied in cases where the grid appli-
cation implements local strategies for searching. In this case a
query for a particular kind of resource is made, and if the
search was successful, the node hosting the desired informa-
tion replies with a REPLY message that contains resource
information. On the other hand, recursive searching is a TTL
restricted search that continuously queries the nodes that are
likely to know the desired resource information. At each step
the query parameters, in particular, the dynamic attribute
search bits are tuned. Such a tuning can help to locate
resources that may not match exactly, but are close approxi-
mations of the original requirements. Finally, the parallel
search technique initiates multiple search queries in addition
to a basic search for the exact match requested parameters.

CHORD-BASED APPROACHES

DGRID: A DHT-Based Grid Resource Indexing and Dis-
covery Scheme — Work by Teo et al. [49] proposed a model
for supporting GRIS over the Chord DHT. The unique char-
acteristic of this approach is that the resource information is
maintained in the originating domain. Every domain in
DGRID designates an index server to the Chord-based GRIS
network. The index server maintains state and attribute infor-
mation for the local resource set. The model distributes the
multi-attribute resource information over the overlay using

■ Figure 13. Example routing in a 2-dimensional CAN space
that utilizes k-d tree index to organize d-dimensional data. Peer
X's coordinate neighbor set = {D, P, Q}; peer A’s coordinate
neighbor set = {B, C, D}; peer C’s coordinate neighbor set =
{A, B, D, P}, peer D’s coordinate neighbor set = {A, C, P, X,
Q}.

A

B

C

D P

Data points

Q
X

Sample routing path
from zone A to zone X

IEEE Communications Surveys & Tutorials • 2nd Quarter 200820

the following schemes: a computational grid domain is denot-
ed by G = {d}, where d is an administrative domain. Every
domain d = {S, R, T}, consists of S; an index server such as
MDS [77], R; a set of compute resources, and T = {a}; differ-
ent resource type set, where a = {attr_type, attr_value} (e.g.,
{CPU – Speed, 1.7GHz}). An index server S maintains indices
to all the resource types in its home domain, S = {r1, r2, …,
rn}. An index r is defined as r = {t, d}, which denotes that r is
a pointer to a resource type t. There is a one-to-one relation-
ship between S and T.

The DGRID avoids node identifier collisions by splitting it
into two parts: a prefix that denotes a data identifier r and a
suffix that denotes an index-server identifier S. Given a node
n representing r = (t, d), the m-bit identifier of n is the com-
bination of the i-bit identifier of t, where i ≤ m, and the m – i
bit identifier of S. So effectively, idm(n) = idi(t)⊕idm–i(S).
Hence, DGRID guarantees that all idm(n) are unique, given

that the identifiers of two nodes differ in either prefixes or
suffixes. The system initialization process requires the index
server S to perform the virtualization of its indices onto T vir-
tual servers. Each virtual server joins the DGRID system to
become an overlay Chord node. This process is referred to as
a join.

The search or lookup operation in the DGRID is based on
Chord lookup primitives. Given a key, p, it is mapped to a
particular virtual index server on the overlay network using
the query get(p). The DGRID indexing approach also sup-
ports domain-specific resource type search. To facilitate such
a lookup operation, index S for domain d is identified by
id′m–i(S) = idj(d) ⊕ idm–i–j(S), j < (m – i). In this case a query
for resource n of type t is routed to a node n that maps to S,
where prefixj(id′m–i(S)) = idj(d), d ∈ D. In general, a query q to
look up a resource type t is translated to the query q′, idm(q′)
= idi(t) ⊕ 0. This is done as id(t) is i-bit length, whereas the

■ Table 7. Classification based on query resolution heuristic, data distribution efficiency, and data locality preserving characteristic.

Algorithm name Heuristic name Preserves data locality
(yes/no)

PHT [54] Chord routing N/A

MAAN [17] Iterative resolution, single attribute dominated routing based on Chord N/A

Dgrid [49] Chord routing N/A

SWORD [50] Bamboo routing No

JXTA search [105] Broadcast N/A

DragonFly [98] Generic DHT routing No

QuadTree [99] Generic DHT routing No

Pub/Sub-2 [100] Chord routing N/A

P-tree [52] Generic DHT routing N/A

Pub/Sub-1 [101] Pastry routing N/A

XenoSearch [55] Generic DHT routing N/A

XenoSearch-II [96] Generic DHT routing N/A

AdeepGrid [48] Single shot, recursive and parallel searching based on Pastry No

HP-protocol [22] Brute force, controlled flooding, directed controlled flooding based on CAN N/A

Squid [21] Generic DHT routing Yes

Mercury [53] Range-selectivity based routing N/A

Adaptive [97] Generic DHT routing N/A

Kd-tree [102] Skip pointer based routing Yes

Meghdoot [103] CAN based routing Yes

Z-curve [102] Skip pointer based routing Yes

P2PR-tree [106] Block/group/subgroup pointer based routing Yes

Super-P2P R*-Tree [104] CAN based routing Yes

IEEE Communications Surveys & Tutorials • 2nd Quarter 2008 21

identifier space is m-bit long. Overall, the lookup cost is
bounded by the underlying Chord protocol: O(logN). In gen-
eral, the lookup cost for a particular resource type t is O(log
Y); Y is the total number of resource types available in the
network.

Adaptive: An Adaptive Protocol for Efficient Support of
Range Queries in DHT-Based Systems — The work in [97]
presents an algorithm to support range queries based on a dis-
tributed logical range search tree (RST). Inherently, the RST
is a complete and balanced binary tree with each level corre-
sponding to a different data partitioning granularity. The sys-
tem abstracts the data being registered and searched in the
network as a set of attribute-value pairs (AV-pairs): {a1 = v1,
a2 = v2, . . . , an = vn}. It utilizes Chord for distributed rout-
ing and network management issues. A typical range query
with length Rq is resolved by decomposing it into O(log(Rq))
subqueries. These subqueries are then sent to the nodes that
index the corresponding data. The system supports updates
and queries for both static and dynamic resource attributes.

The content represented by an AV-pair is registered with
the node whose ID is numerically closest to the hash of the
AV-pair. To overcome the skewed distribution, the system
organizes nodes in a logical load balancing matrix (LBM).
Each column in the LBM represents a partition (i.e., a subset
of content names that contain a particular AV-pair), while
nodes in different rows within a column are replicas of each
other. Initially, an LBM has only one node, but whenever the
registration load on a particular node in the system exceeds a
threshold (Treg), the matrix size is increased by 1. All future
registration requests are shared by the new nodes in the LBM.
Note that the number of partitions P is proportional to the
registration load,

where LR is the data item’s registration load, and CR is the
capacity of each node.

An attribute a can have numerical values denoted by
domain Da. Da is bounded and can be discrete or continuous.
Da is split up into subranges and assigned to different levels of
the RST. An RST with n nodes has O(⎡log n + 1⎤) levels.
Levels are labeled consecutively with the leaf level being level
0. Each node in the RST holds indexing information for dif-
ferent subranges. Typically, the range of the ith node from the
left represents the range [vi, vi+2l–1]. The union of all the
ranges at each level covers the full Da. In a static RST, the
attribute value v is registered at each node in the tree that lies
on the path path(v) to the leaf node that indexes the exact
value. The new value information is updated into the LBM if
a node on the path maintains it.

In a static setting, a query Q : [s , e] for values of an
attribute a is decomposed into k subqueries, corresponding to
k nodes in the RST, N1, …, Nk. The efficiency of the query
resolution algorithm depends on the relevance factor, which is
given by

where Ri is node Ni’s range length, and Rq is the query length.
The relevance factor r denotes how efficiently the query range
matches the RST nodes that are being queried. The query Q
is resolved by querying the node that has the largest range

within [s, e] (also referred to as the node that has the mini-
mum cover [MC] for the query range). Furthermore, this pro-
cess is recursively repeated for the segments of the range that
are not yet decomposed. When the MC is determined, the
query is triggered on all the overlay nodes that correspond to
each MC node. For dynamic setting, the authors proposed
additional optimization and organization techniques, more
details on these aspects of the system can be found in the ref-
erenced article.

Pub/Sub-2: Content-based Publish-Subscribe over Struc-
tured P2P Networks — The work in [100] presents a con-
tent-based publish-subscribe indexing system based on the
Chord DHT. The system is capable of indexing d-dimensional
index space by having a separate overlay for each dimension.
Every ith dimension or an attribute ai has a distinct data type,
name, and value v(ai). An attribute type belongs to a prede-
fined set of primitive data types commonly defined in most
programming languages. An attribute name is normally a
string, whereas the value can be a string or numeric in any
range defined by the minimum and maximum (vmin(ai),
vmax(ai)) along with the attribute’s precision vpr(ai). The model
supports a generalized subscription schema that includes dif-
ferent data sets and constraints on their values such as =, ≠,
>, <. With every subscription, the model associates a unique
subscription identifier (subID). The subID is the concatena-
tion of three parts — c1, c2 and c3. c1 is the ID of the node
receiving the subscription; the number of bits in the subID is
equal to the m-bits in the Chord identifier space. c2 is the ID
of the subscription itself, and c3 is the number of attributes on
which the constraints are declared.

An attribute ai of a subscription with identifier subID is
placed on a node successor(h(v(ai))) in the Chord ring. A sub-
scription can declare a range of values for the attribute, ai,
such as vlow(ai) and vhigh(ai). In this case the model follows ns
steps, where

at each step a Chord node is chosen by the successor(h(vlow(ai)
+ vpr(ai))) function. In the subsequent steps the previous
attribute value is incremented by the precision value vpr(ai)
and mapped to the corresponding Chord node. Updating the
range values is done by following the same procedure for all
Chord nodes that store the subID for the given range of val-
ues. The overall message routing complexity depends on the
type of constraints defined over the attributes for a given
subID. In case of equality constraints, the average number of
routing hops is O(1/2 log(n)). When the constraint is a range,
the complexity involved is O(ns × 1/2 log(n)), where n is the
step factor.

An information publish event in the system is denoted by
Na–event that includes various attributes with search values. An
event-publish to event-notify matching algorithm processes each
attribute associated with Na–event separately. It locates various
nodes that store the subIDs for an attribute ai, by applying the
function successor(h(v(ai))). The matching algorithm then stores
the list of unique subIDs that are found at a node n in the list
Lai designated for ai. The Nk–sub list stores the subIDs that
match the event Na–event. A subIDk matches an event if and only
if it appears in exactly Nk–sub derived from the different Chord
ring. The overall message routing complexity involved in locat-
ing the list of subIDs matching an event Na–event is O(1/2 log(n)).
The authors also propose a routing optimization technique to
reduce the lookup search complexity.

n
v a v a

v as
high i low i

pr i
=

−() ()

()
;

r
R

R

q

i
k

i

=
=∑ 1

,

P
L

C

R

R
=
⎡

⎢
⎢
⎢

⎤

⎥
⎥
⎥
,

IEEE Communications Surveys & Tutorials • 2nd Quarter 200822

QuadTree: Using a Distributed Quadtree Index in Peer-
to-Peer Networks — The work in [99] proposes a distributed
quadtree index that adopts an MX-CIF quadtree [116] for
accessing spatial data or objects in P2P networks. A spatial
object is an object with extents in a d-dimensional setting. A
query that seeks all the objects contained in or overlapping a
particular spatial region is called a spatial query. Such queries
are resolved by recursively subdividing the underlying d-
dimensional space and then solving a possibly simpler inter-
section problem. This recursive subdivision process utilizes the
basic quadtree representation. In general, the term quadtree
is used to describe a class of hierarchical data structures
whose common property is that they are based on the princi-
ple of common decomposition of space.

The work builds on the region quadtree data structure. In
this case, by applying the fundamental quadtree decomposi-
tion property, the underlying two-dimensional square space is
recursively decomposed into four congruent blocks until each
block is contained in one of the objects in its entirety or is not
contained in any of the objects. The distributed quadtree
index assigns regions of d-dimensional space to the peers in a
P2P system. Every quadtree block is uniquely identified by its
centroid, termed the control point. Using the control point, a
quadtree block is hashed to a peer in the network. The Chord
method is used for hashing the blocks to the peers in the net-
work. If a peer is assigned a quadtree block, it is responsible
for processing all query computations that intersect the block.
Multiple control points (i.e., quadtree blocks) can be hashed
to the same peer in the network. To avoid a single point of
failure at the root level of the quadtree, the authors incorpo-
rate a technique called fundamental minimum level, fmin. This
technique means that objects are only allowed to be stored at
levels l ≥ fmin; therefore, all the query processing starts at lev-
els l ≥ fmin. The scheme also proposes the concept of a funda-
mental maximum level, fmax, which limits the maximum depth
of the quadtree at which objects are inserted.

A peer initiates a new object insertion or query operation
by calling the methods InsertObject() or ReceiveClients-
Query(). These methods in turn call a subdivide() method
that computes the intersecting control point associated with
the new object or lookup query. Once the control points are
computed, the peer broadcasts the insertion or query opera-
tion to the peer(s) that own(s) the respective control points.
The contacted peers evoke DoInsert() and Do-Query() meth-
ods to determine the location for the inserted object or to
locate the peers that can answer the query. The operation
may propagate down to the fmax level or until all relevant
peers are located. The authors also propose some optimiza-
tions such as each node maintaining a cache of addresses for
its immediate children in the hierarchy. This reduces the sub-
sequent lookup complexity to O(1) beyond the root peer at
the fmin level, as it is no longer required to traverse the Chord
ring for each child. However, this is only true when the opera-
tion is a regular tree traversal. Note that on average, O(log n)
messages are required to locate a root peer for a query.

DragonFly: A Publish-Subscribe Scheme with Load
Adaptability — The work in [111] proposes a content-based
publish-subscribe system with load adaptability. They apply a
spatial hashing technique for assigning data to the peers in the
network. The system supports multi-attribute point and range
queries. The query routing and object location (subscription
and publication) mechanism can be built using the services of
any DHT. Each distinct attribute is assigned a dimension in a
d-dimensional Cartesian space. Hence, a domain with d
attributes {A1, A2, …, Ad} will be represented by a d-dimen-
sional Cartesian space. Every attribute in the system has lower

and upper bounds on its values. The bounds act as constraints
for subscriptions and event indexing. The d-dimensional
Cartesian space is arranged as a tree structure with the
domain space mapped to the root node of the tree. In particu-
lar, the tree structure is based on a quad tree [116]. To negate
a single point of failure at the root node, the system adopts a
technique called the fundamental minimum level. More details
about this technique can be found in [99]. This technique
recursively divides the logical space into four quadrants. With
each recursion step on an existing quadrant, four new quad-
rants are generated. Hence, multiple recursion steps basically
create a multilevel quadtree data structure. The quadtree-
based organization of DragonFly introduces parent-child rela-
tionships between tree cells. A cell at level d is always a child
of a particular cell at level d – 1. However, this relationship
exists between consecutive levels only. In other words, every
cell has a direct relationship with its child cells and no rela-
tionship with its grandchild cells. Another important feature
of DragonFly is the diagonal hyperplane. This hyperplane is
used to handle publish and subscribe region pruning and
selection in d-dimensional space. In 2d space, the diagonal
hyperplane is a line spanning from the northwest to the south-
east vertices of the rectangular space. In the d-dimensional
context, this hyperplane is represented by the equation

where xmaxd and xmind are the upper and lower boundary val-
ues for the dth attribute in the domain space.

The d-dimensional domain space acts as the basis for
object routing in DragonFly. Every subscription is mapped to
a particular cell or set of cells in the domain space. In this
case the cell acts as the subscription container. A point sub-
scription takes the form {A1 = 10, A2 = 5}, while a range
subscription is represented by {A1 ≤ 10, A2 ≤ 5}. The root
cells at the fundamental minimum level are the entry points
for a subscription’s object routing. These root cells are man-
aged by the peers in the network. Every subscription is
mapped to a particular region in the d-dimensional space. The
peer responsible for the region (root cell) is located by hash-
ing the coordinate values. If the root cell has undergone the
division process due to overload, the child cells (peers at a
lower level in the hierarchy) are searched using the DHT
routing method. Once a child cell is located, the root cell
routes the subscription message to it. This process is repeated
until all relevant child cells are notified for this subscription.
However, if the root cell has not undergone any division pro-
cess, it is made responsible for this subscription.

Mapping publication events to the peers in the network is
similar to the subscription mapping process. There are two
kinds of publishing events: point and range. Mapping point
events is straightforward, as the relevant root cell (peer) is
located by hashing the coordinated values. Resolving cells cor-
responding to range events can be complex. In this case the
routing system sends out the published event to all the root
cells that intersect with the event region. When the message
reaches the root cells, a method similar to the one adopted in
case of subscription events is applied to locate the child cells.

MAAN: A Multi-Attribute Addressable Network for Grid
Information Services — Cai et al. [17] present a multi-
attribute addressable network (MAAN) approach for enabling
a GRIS. They extend the Chord [41] protocol to support
DRQs. MAAN addresses the d-dimensional range query
problem by mapping the attribute values to the Chord identi-

x

x x

x

x x

x

x xmax min max min

d

max mind d

1 2

1 1 2 2
−

+
−

+ +
−

� == K ,

IEEE Communications Surveys & Tutorials • 2nd Quarter 2008 23

fier space via a uniform locality preserving hashing. Note that
for every attribute dimension, a separate Chord overlay is
maintained. For attributes with numerical values, MAAN
applies locality preserving hashing functions to assign an iden-
tifier in the m-bit identifier space. A basic range query
includes the numeric attribute values v between l and u for
attribute a, such that l ≤ v < u, where l and u are the lower
and upper bounds, respectively. In this case node n formulates
a lookup request and uses the underlying Chord routing algo-
rithm to route it to node nl such that nl = successor(H(l)). The
lookup is done using the SEARCH_REQUEST(k, R, X) primi-
tive, k = successor(H(l)) is the key to look up, R is the desired
attribute value range [l, u], and X is the list of resources that
has the required attributes in the desired range. A node nl,
after receiving the search request message, indexes its local
resource list entries and augments all the matching resources
to X. In case nl is the successor(H(u)), it sends a reply message
to the node n. Otherwise, the lookup request message is for-
warded to its immediate successor until the request reaches
node nu, the successor of H(u). The total routing complexity
involved in this case is O(logN + K), where O(logN) is the
underlying Chord routing complexity and K is the number of
nodes between nl and nu.

MAAN also supports multi-attribute query resolution by
extending the above single-attribute range query routing algo-
rithm. The system maintains a separate overlay/mapping func-
tion for every attribute ai. In this case each resource has M
attributes a1, a2, …, am and corresponding attribute value
pairs < ai, vi >, such that 1 ≤ i ≤ M. Each resource registers
its information (attribute value pairs) at a node ni = succes-
sor(H(vi)) for each attribute value vi. Thus, each node in the
overlay network maintains the resource information in the
form of < attribute–value, resource–info > for different
attributes. The resource lookup query in this case involves a
multi-attribute range query, which is a combination of sub-
queries on each attribute dimension, that is, vil ≤ ai ≤ viu,
where 1 ≤ i ≤ M, and vil and viu are the lower and upper
bounds of the lookup query. MAAN supports two routing
algorithms to resolve multiple-attribute queries:
• Iterative query resolution (IQR)
• Single attribute dominated query resolution (SADQR)
The overall routing complexity with IQR is O(∑M

i=1(logN + N
× si)), while using the SAQDR technique, the lookup can be
resolved in O(logN + N × Smin), where Smin is the minimum
selectivity for all attributes.

Squid: Flexible Information Discovery in Decentralized
Distributed Systems — Schmidt et al. [21] proposed a GRIS
model that utilizes SFCs for mapping d-dimensional attribute
space to a one-dimensional search space. The proposed GRIS
model consists of the following main components:
• A locality preserving mapping that maps data elements to

indices;
• An overlay network topology;
• A mapping from indices to nodes in the overlay network;
• A load balancing mechanism;
• A query engine for routing and efficiently resolving

attribute queries using successive refinements and prun-
ing.

All data elements are described using a sequence of attributes
such as memory, CPU speed, and network bandwidth. The
attributes form the coordinates of a d-dimensional space,
while the data elements are the points. This mapping is
accomplished using a locality-preserving mapping called space
filling curves (SFCs) [111, 112]. SFCs are used to generate a
1d index space from the d-dimensional attribute space, where
d is the number of different attribute types. Any range query

or query composed of attributes, partial attributes, or wild
cards can be mapped to regions of the attribute space and
subsequently to the corresponding clusters in the SFC.

The Chord protocol is utilized to form the overlay network
of peers. Each data element is mapped, based on its SFC-
based index or key, to the first node whose identifier is equal
to or follows the key in the identifier space. The lookup oper-
ation involving partial queries and range queries typically
requires interrogating more than one node, since the desired
information is distributed across multiple nodes. The lookup
queries can consist of combinations of attributes, partial
attributes, or wildcards. The result of the query is a complete
set of data elements that matches the user’s query. Valid
queries include (computer, network), (computer, net*) and
(comp*,*). The range query consists of at least one dimension
that needs to be looked up for range values. The query resolu-
tion process consists of two steps:
• Translating the attribute query to relevant clusters of the

SFC-based index space;
• Querying the appropriate nodes in the overlay network

for data elements.
The system also supports two load balancing algorithms in

the overlay network. The first algorithm proposes exchange of
information between neighboring nodes about their loads. In
this case the most loaded nodes give part of their load to their
neighbors. The cost involved in this operation at each node is
O(log2

2 N) messages. The second approach uses a virtual node
concept. In this algorithm each physical node houses multiple
virtual nodes. The load at a physical node is the sum of the
load of its virtual nodes. In case the load on a virtual node
exceeds predefined threshold value, the virtual node is split
into more virtual nodes. If the physical node is overloaded,
one or more of its virtual nodes can migrate to less loaded
neighbors or fingers. Note that creation of a virtual node is
inherent to the Chord routing substrate.

P-Tree: Querying Peer-to-Peer Networks Using P-Trees
— Crainniceanu et al. [52] propose a distributed fault-tolerant
P2P index structure called P-tree. The main idea behind the
proposed scheme is to maintain parts of semi-independent
B+–trees at each peer. The Chord protocol is utilized as a
P2P routing substrate. Every peer in the P2P network believes
that the search key values are organized in a ring, with the
highest value wrapping around to the lowest value. Whenever
a peer constructs its search tree, the peer pretends that its
search key value is the smallest value in the ring. Each peer
stores and maintains only the leftmost root-to-leaf path of its
corresponding B+–tree. The remaining part of the subtree
information is stored at a subset of other peers in the overlay
network. Furthermore, each peer only stores tree nodes on
the root-to-leaf path, and each node has at most 2d entries. In
this case the total storage requirement per peer is O(d logdN).
The proposed approach guarantees O(logd N) search perfor-
mance for equality queries in a consistent state. Here d is the
order of the subtree, and N is the total number of peers in the
network. Overall, in a stable system when no insert or delete
operation is being carried out, the system provides O(m +
logdN) search cost for range queries, where m is the number
of peers in the selected range in 1d space.

The data structure for a P-tree node p is a double indexed
array p.node[i][j], where 0 ≤ i ≤ p.maxLevel and 0 ≤ j
≤p.node[i].numEnteries, maxLevel is the maximum allowed
height of the P-tree, and NumEnteries is the number of entry
allowed per node. Each entry of this 2d array is a pair (value,
peer), which points to the peer that holds the data item with
the search key value. In order that the proposed scheme
works properly, the P-tree should satisfy the four predefined

IEEE Communications Surveys & Tutorials • 2nd Quarter 200824

properties. These properties include the constraints on the
number of entries allowed per node, left-most root-to leaf
path, coverage and separation of sub-trees. The coverage
property ensures that there are no gaps between the adjacent
sub-trees. While the separation property ensures that the
overlap between adjacent subtrees at a level i have at least d
nonoverlapping entries at level i – 1. This ensures that the
search cost is O(logd N).

CAN BASED APPROACHES

One Torus to Rule Them All (Kd-Tree and Z-Curve
based indexing) — The work in [102] proposes two
approaches for enabling DRQs over the CAN DHT. The d-
dimensional data is indexed using the well known spatial
data structures: z-curves and Kd-tree. First scheme is
referred to as SCRAP: Space Filling Curves with Range Par-
titioning. SCRAP involves two fundamental steps: the d-
dimensional data is first mapped to a 1-dimensional using
the z-curves, and then 1-dimensional data is contiguously
range partitioned across peers in the DHT space. Each peer
is responsible for maintaining data in the contiguous range
of values. Resolving DRQs in SCRAP network involves two
basic steps: mapping DRQ into SRQ using the SFCs, and
routing the 1-dimensional range queries to the peers that
indexes the desired look-up value. For routing query in 1-
dimensional space the work proposes a scheme based on
skip graph [123]. A skip graph is a circular linked list of
peers, which are organized in accordance with their partition
boundaries. Additionally, peers can also maintain skip point-
ers for faster routing. Every peer maintains skip pointers to
O(log(n)) other peers at an exponentially increasing dis-
tances from itself to the list. A SRQ query is resolved by the
peer that indexes minimum value for the desired range. The
message routing is done using the skip graph peer lists.

Other approach referred to as d-dimensional Rectangula-
tion with Kd-trees (MURK). In this scheme, d-dimensional
space (for instance a 2d space) is represented as “rectangles”
i.e., (hypercuboids in high dimensions), with each node main-
taining one rectangle. In this case, these rectangles are used
to construct a distributed Kd-tree. The leaf node in the tree
are stored by the peers in the network. Routing in the net-
work is based on the following schemes:
• CAN DHT is used as basis for routing the DRQs.
• Random pointers-each peer has to maintain skip pointers

to random peers in the network. This scheme provides
similar query and routing efficiency as multiple realities
in CAN; and space-filling skip graph-each peer maintain
skip pointers to O(log(n)) other peers at exponentially
increasing distances from itself in the network. Simula-
tion results indicate that random and skip-graph based
routing outperforms the standard CAN based routing for
DRQs.

Meghdoot: Content-Based Publish/Subscribe over P2P
Networks — The work in [103] proposes a content-based
Pub/Sub system based on CAN routing substrate. Basic mod-
els and definitions are based on the scheme proposed in the
work [123]. The model defines a d-dimensional attribute
space given by the set S = A1, A2, …, Ad. Further, each
attribute value Ai is denoted using the tuple Name: Type,
Min, Max. Different Type includes an integer, floating point
and string character. While Min and Max denotes the range
over which values lie. All peers in the system use the same
schema S.

Typically, a subscription is a conjunction of predicates over
one or more attributes. Each predicate specifies a constant

value or range using the operators (such as =, ≥, ≤, ≥ and ≤)
for an attribute. An example subscription is given by S = (A1
≥ v1) /\ (v2 ≤ A3 ≤ v3) . A system consisting of d attributes is
always mapped to a Cartesian space of 2d dimensions. An
attribute Ai with domain value [Li, Hi] corresponds to dimen-
sions 2i – 1 and 2i in a 2-dimensional cartesian space. The 2d
dimensional logical space is partitioned among the peers in
the system. A subscription S for d attributes is mapped to the
point < l1, h1, l2, h2, …, ld, hd > in the 2d dimensional space
which is referred to as the subscription point. Pub/Sub appli-
cations submit their subscription to a randomly chosen peer
P0. An origin peer P0 routes the subscription request to the
target peer Pt using the basic CAN routing scheme. The peer
Pt owns a point in the d-dimensional space to which a sub-
scription S maps. The overall complexity involved in routing a
subscription is O(d n1/d), where n is the number of peers in
the system and d is the dimensionality of the Cartesian space.

Similarly every publish event is mapped to a particular
point in the d-dimensional space, also referred to as the event
point/event zone. The event is then routed to the Pt from the
origin peer using the standard CAN routing. All the peers
that own the region affected by an event are notified accord-
ingly. Following this, all the peers in the affected region
matches the new event against the previously stored subscrip-
tions. Finally, the event is delivered to applications that have
subscribed for the event.

HP-protocol: Scalable, Efficient Range Queries for Grid
Information Services — Andrejak et al. [22] extend the CAN
routing substrate to support 1-dimensional range queries.
They apply the SFC in particular the Hilbert Curves for map-
ping a 1-dimensional attribute space (such as no. of proces-
sors) to a d-dimensional CAN space. For each resource
attribute/dimension a separate CAN space is required. To
locate a resource based on multiple attributes, the proposed
system iteratively queries for each attribute in different CAN
space. Finally, the result for different attributes are concate-
nated similar to “join” operation in the database.

The resource information is organized in pairs (attribute-
value, resource-ID), are referred to as objects. Thus, in this
case there is one object per resource attribute. Hence, if a
resource has m attributes then there would be m different
object type. The range of an attribute lies in the interval [0.0,
1.0]. A subset of the servers are designated as information
servers in the underlying CAN-based P2P network (for e.g.,
one information server per computational resource or storage
resource domain). Each of them is responsible for a certain
sub-interval of [0.0, 1.0] of the attribute values. Such servers
are called interval keeper (IK). Each computational resource
server or storage server in the Grid registers its current
attribute value to an IK. Each IK owns a zone in the logical d-
dimensional Cartesian space (or a d-torus).

The CAN space is partitioned into zones, with a node (in
this case an information server) serving as a zone owner. Simi-
larly, objects (in this case (attribute, value) pair) is mapped to
logical points in the space. A node R is responsible for all the
objects that are mapped to its zone. It is assumed that the
dimension d and the Hilbert Curve’s approximation level is 1
are fixed, and known throughout the network. Given a
(attribute, value) pair, a hypercube is determined by the
Hilbert Function, the function returns the corresponding
interval that contains the value. Following this, the message
containing this object is routed to an IK whose zone encom-
passes this hypercube.

Given a range query r with lower and upper bounds ∈ [l,
u], a query message is routed to an information server which
is responsible for the point

IEEE Communications Surveys & Tutorials • 2nd Quarter 2008 25

Once such a server is located, then the request is recursively
flooded to all its neighbors until all the IKs are located. Three
different kinds of message flooding scheme are presented
including the brute force, controlled flooding and directed
control flooding. Each of these schemes has different search
strategy and hence have different message routing complexi-
ties. The system handles server failures/dynamicity by defining
an information update interval. If the update for one of the
objects is not received in the next reporting round, the corre-
sponding object is erased/removed from the network. In case,
the object value changes (attribute value) to the extent that it
is mapped to a new IK then previous object is erased in the
next reporting round.

Super-P2P R*-Tree: Supporting Multi-dimensional
Queries in P2P Systems — The authors in the work [104]
extend the d-dimensional index R*-tree [124], for supporting
range and k-Nearest Neighbor (kNN) queries in a super-peer
[125] based P2P system. The resulting distributed R*-tree is
referred to as an NRtree. Routing in the distributed d-dimen-
sional space is accomplished through the CAN protocol. The
d-dimensional distributed space is partitioned among the
super-peer networks based on the Minimum Bounding Rect-
angle (MBR) of objects/points. Each partition (super-peer
network) refers to an index-cluster (i.e., a MBR), and can be
controlled by one or more super-peer. Effectively, an index-
cluster includes a set of passive peers and super-peers. Evey
index cluster maps to a zone in the CAN based P2P space.
The functionality of a super-peer is similar to a router, it keep
tracks of other index-clusters, performs inter-cluster routing,
indexes data in other super-peer partition and maintains clus-
ter-specific NR-tree. Every passive peer joins the network by
contacting any available super-peer. The contacted super-peer
routes the join request to other super-peer, which is responsi-
ble for the zone indexed by the passive peer. Every passive
peer maintains a part of the cluster-specific NR-tree.

The bulk of query processing load is coordinated by super-
peers. Super-peers can forward query to its passivepeers, in
case the indexed data is managed by them. Every look-up
request is forwarded to the local super-peer, which in turn
forwards to other super-peers, if the requested indices are not
available in the local zone. Peers initiating range query usually
send the look-up rectangle, while in case of a kNN query,
query point and the desired number of nearest neighbors (k).
In case of a range query, the contacted super-peer routes the
query to the index-cluster where the centroid of the query
maps to. The owner of this index-cluster is referred to as pri-
mary super-peer. The primary super-peer searches its NR-tree
and finds passive peers with index intersecting the query
region. The passive peers directly reply to the query initiating
peer when a match occurs. Every look-up query has a TTL
factor, which controls the life time for a query in the network.
kNN query resolution process follows a recursive path, at
every successful match the min_dist (distance from the query
point) is updated with a new value. The kNN resolution pro-
cess starts at root level of NR-tree, sorting entries by their
min_dist to query point, and then recursively traverses sub-
tree of entries with minimum min_dist.

MISCELLANEOUS

SWORD: Distributed Resource Discovery on PlanetLab —
SWORD [50] is a decentralized resource discovery service

that supports multi-attribute queries. This system is currently
deployed and tested over PlanetLab resource sharing infra-
structure. It supports different kind of query composition
including per-node characteristics such as load, physical mem-
ory, disk space and inter-node network connectivity attributes
such as network latency. The model abstracts resource as a
networks of interconnected resource groups with intra-group,
inter-group, and per-node network communication attributes.
In particular, SWORD system is a server daemon that runs on
various nodes. The main modules of the daemon includes the
distributed query processor (DQP) and the query optimizer
(QO). SWORD system groups the nodes into two sets. One
set of nodes called server nodes form the part of the struc-
tured P2P overlay network [53, 126] and are responsible for
managing the distributed resource information. While other
set of nodes are computation nodes that report their resource
attribute values to these server nodes.

For each resource attribute Ai, a corresponding DHT key
ki is computed using the standard SHA-1 scheme. A key ki is
computed based on the corresponding value of Ai at the time
attribute value is sent. Each attribute is hashed to a 160-bit
DHT key. The mapping function convert attribute values from
their native data-type (String) and range (numeric) to a range
of DHT keys. On receiving the attribute value tuple, the serv-
er node stores the tuple in the local table. In case, these val-
ues are not updated within timeout interval then are deleted
(assuming node has probably left the network or owner of the
key has changed due to change in attribute values). SWORD
resolves multi-attribute range query similar to [53].

Users in general specify resource measurements values
including the node characteristics and inter/intra-node net-
work latency. A query also includes the node characteristics
such as penalty levels for selecting nodes that are within the
required range but outside the preferred range. These queries
are normally written in Extended Markup Language (XML).
A user submits query to a local DQP which in turn issues a
distributed range query. Once the result is computed, then it
is passed on to the QO (the nodes in result that are referred
as “candidate nodes”). The QO selects those candidate nodes
which has least penalty and passes the refined list to the user.

Mercury: Supporting Scalable Multi-Attribute Range
Queries — Mercury [53] is a distributed resource discovery
system that supports multi-attribute based information
search. Mercury handles multi-attribute lookups by creating a
separate routing hub for every resource dimension. Each
routing hub represents a logical collection of nodes in the
system and is responsible for maintaining range values for a
particular dimension. Thus, hubs are basically orthogonal
dimensions in the d-dimensional attribute space. Further,
each hub is part of a circular overlay network. Mercury sys-
tem abstracts the set of attributes associated with an applica-
tion by A. AQ and denotes the set of attributes in a query
message using Q. Attribute set for data-record D is denoted
by AD. The function πa returns the value (range) for a partic-
ular attribute a in a query. An attribute hub for an attribute a
is denoted by Ha. Each node in a Ha is responsible for a con-
tiguous range ra of values. Ranges are assigned to different
overlay nodes during the initial join process. Under ideal
condition, the system guarantees range-based lookups within
each routing hub in Olog2 n/k when each node maintains k
fixed links to the other nodes.

Note that, while the notion of a circular overlay is similar
to DHTs, Mercury do not use any randomizing cryptographic
hash functions for placing the nodes and data on the overlay.
In contrast, Mercury overlay network is organized based on
set of links. These links include the:

l u+
2

.

IEEE Communications Surveys & Tutorials • 2nd Quarter 200826

• Successor and predecessor links within the local attribute
hub;

• k links to other nodes in the local attribute hub (intrahub
links);

• One link per hub (interhub link) that aids in communi-
cating with other attribute hubs and resolving multi-
attribute range queries.

Note that k intrahub links is a configurable parameter and
could be different for different nodes in the attribute overlay.
In this case the total routing table size at a node is k + 2.
When a node nk is presented with a message to find a node
that maintains a range value [li, ri], it chooses the neighbor ni
such that the clockwise distance d(li, v) is minimized; in this
case the node ni maintains the attribute range value [li, ri].
The key to the message routing performance of Mercury is
the choice of k intrahub links. To set up each link i, a node
draws a number x ∈ I using the harmonic probability distribu-
tion function:

Following this, a node ni attempts to add the node n’ in its
routing table that manages the attribute range value r + (Ma –
ma) × x, where ma and Ma are the minimum and maximum val-
ues for attribute a. For routing a data record D, the system
routes to the value πa(D). For query Q, πa(Q) is a range. In this
case first the message is routed to the first node that holds the
starting range values; then the range contiguity property is
used to spread the query along the overlay network.

PHT: Prefix Hash Tree — The work in [54] presents a
mechanism for implementing range queries over a DHT-
based system via a trie-based scheme. The bucket in the trie is
stored at the DHT node obtained by hashing its correspond-
ing prefixes. The resulting data structure is referred as a trie.2
In the PHT, every vertex corresponds to a distinct prefix of
the data domain being indexed. The prefixes of the nodes in
the PHT form a universal prefix set.3 The scheme associates a
prefix label with each vertex of the tree. Given a vertex with
label l, its left and right child vertices are labeled l0 and l1,
respectively. The root of the tree is always labeled with the
attribute name, and all subsequent vertexes are labeled recur-
sively.

A data item is mapped and stored at the node having the
longest prefix match with the node label. A node can store up
to B items; if this threshold is exceeded, a node is recursively
divided into two child nodes. Hence, this suggests that data
items are only stored in the leaf nodes in the PHT, and the
PHT itself grows dynamically based on distribution of inserted
values. This logical PHT is distributed across nodes in the
DHT-based network. Using the DHT lookup operation, a
PHT node with label l is thus assigned to a node with the
identifier closest to HASH(l). Lookup for a range query in a
PHT network is performed by locating the node correspond-
ing to the longest common prefix in the range. When such a
node is found, parallel traversal of its subtree is done to

retrieve all the desired items. Note that significant query
lookup speedup can be achieved by dividing the range into a
number of subranges.

JXTA: JXTA Search — JXTA Search [71] is an open frame-
work based on the JXTA [105] routing substrate. A JXTA
search network consists of search hubs, information providers,
and information consumers. The network message communi-
cation protocol is based on the XML format. In the JXTA
network search hubs are organized into N distinct groups.
These groups are referred to as advertisement groups. These
search hubs act as a point of contact for providers and con-
sumers. Furthermore, each search hub is a member of a net-
work of hubs that has at least one representative of hubs from
every advertisement group. These groups are termed query
groups. Hence, in this case there is 100 percent reachability to
all stored information in the network.

Every information provider in the network registers its
resource information with its local search hub. Each hub peri-
odically sends an update message (new additions and dele-
tions of registrations) to all the hubs in its advertisement
group. If the grouping of hubs is content-based, the advertise-
ment is forwarded to the relevant representative for that con-
tent. Whenever an information consumer wishes to look for
data on the search network, it issues an information request
query to the hub it knows or in which it has membership. The
hub that receives this query first searches its local index and
then other hubs in its advertisement group. If a match is
found in the same advertisement group, the query is forward-
ed to that hub. If the query cannot be resolved in the local
advertisement group, it is broadcast to all remaining advertise-
ment groups using query group membership information.
However, if the search network is organized based on content,
the query is routed to the advertisement group responsible for
indexing the desired content.

P2PR-Tree: An R-Tree-Based Spatial Index for P2P Envi-
ronments — The work in [106] presents a scheme for adopt-
ing the R-tree [108] in a P2P setting. A P2PR-tree statically
divides the d-dimensional attribute space (universe) into a set
of blocks (rectangular tiles). The blocks formed as a result of
initial division of the space forms level 0 of the distributed
tree. Furthermore, each block is statically divided into a set of
groups, which constitute level 1 in the tree. Any further divi-
sion on the group level (and subsequently of the subgroup) is
done dynamically and designated as subgroups at level i (i ≥
2). When a new peer joins the system, it contacts one of the
existing peers, which informs it about the minimum bounding
rectangle (MBR) of the blocks. Using this overall block struc-
ture information, a peer decides to which block(s) it belongs.

When relevant block(s) are determined, a peer queries
other peers in the same block for compiling group-related
MBR information. It also queries at least one peer in every
other group. Using this group structure information, a peer
knows about its own group. After determining the group, the
same process is utilized for determining the subgroups and so
on. Effectively, a peer maintains the following routing infor-
mation:
• Pointers to all blocks in the universe;
• Pointers to all groups in its block;
• Pointers to all subgroups in its group;
• Finally, pointers to all peers in its subgroup;
The scheme defines a threshold value on the maximum num-
ber of peers in a group and subgroup denoted GMax and
SGMax, respectively.

A query QL for an object is propagated recursively top
down starting from level 0. When a query arrives at any peer

p x
n xn ()

log
.=

1

2 A trie is a multiway retrieval tree used for storing strings over an alphabet
in which there is one node for every common prefix, and all nodes that
share a common prefix hang off the node corresponding to the common
prefix.

3 A set of prefix is a universal prefix set if and only if for any infinite binary
sequence b there is exactly one element in the set that is a prefix of b.

IEEE Communications Surveys & Tutorials • 2nd Quarter 2008 27

Pi in the system, Pi checks whether its MBR covers the region
indexed by the query. If so, Pi searches its own R-tree and
returns the results, and the search is terminated at that point.
Otherwise, the peer forwards the query to the relevant block,
group, subgroup, or peer using its routing table pointers. This
process is repeated until the query block is located or the
query reaches a dead end of the tree.

COMPARISON OF SURVEYED TECHNIQUES:
SCALABILITY AND LOAD BALANCING

A majority of the surveyed approaches utilize a logical index
structure that distributes the data among peers in a decentral-
ized GRIS. The logical structure maintains a d-dimensional (d
≥ 1) index space over the DHT key space, and forms the basis
for the routing and indexing of data objects. Some approaches
(Table 4) support only 1d queries for every distinct routing
space. MAAN, Pub/Sub-1, and Pub/Sub-2 utilize variants of
the SHA-1 hashing scheme for range partitioning 1d data over
the DHT key space. We call these approaches variants of
SHA-1, as they create a logical index space over the DHT key
space, which is utilized by the query routing heuristics. These
algorithms did not consider the case of data skew that can
lead to routing load imbalance among the peers.

P-tree and Adaptive proposed a distributed version of the
B–+ tree index as the basis for range partitioning 1d data.
The PHT approach uses a trie-based structure for enabling 1d
range queries in a peer-to-peer network. XenoSearch orga-
nizes resource information in the form of a logical tree where
the leaves are the individual XenoServers. Query routing in
XenoSearch is based on aggregation points (APs). An AP is
managed by a XenoServer node in the system and is responsi-
ble for all the query computation for ranges of values covered
by the AP. The Pastry IDs for the XenoServer responsible for
an AP can be computed algorithmically. An AP owner in the
system is similar to a super-peer, which is responsible for han-
dling all query computation intersecting its region of owner-
ship. The Adaptive approach considered the case of data skew
and proposed a solution based on the load bbalancing matrix
(LBM); PHT, P-tree, and XenoSearch did not propose any
solution to this problem.

HPProtocol uses inverse Hilbert mapping to map the 1d
index space to CAN’s d-dimensional key space. Mercury
directly operates on the attribute space along with a random
sampling technique utilized for facilitating query routing and
load balancing. A serious limitation of all the above approach-
es is the message overhead involved in maintaining a separate
routing space for each attribute dimension. Furthermore,
searching in a d-dimensional space requires querying every
dimension separately and then finding an intersection. This
leads to high message communication overhead for lookup
and update queries. Clearly, these are not scalable ways to
organize a grid resource attribute data set that has many
dimensions.

The JXTA system does not create a logical index space
over the distributed search network — instead, search is based
on query broadcast among the advertisement group. This
might prove costly in terms of number of messages generated.
The Sword and Dgrid systems use a variant of SHA-1 hashing
that partitions the DHT key space among different attribute
types. Both Sword and Dgrid systems store all the attribute
values in a single DHT ring. The Sword query resolution
scheme is similar to MAAN, so it is also costly in terms of
routing hops and messages generated. The AdeepGrid
approach encodes all the resource attributes into a single
object and then performs SHA-1 hashing to generate a Pastry

ring identifier. However, in this case the authors do not
address the issue of data skew. Furthermore, the proposed
search techniques are not capable of returning deterministic
results in all cases.

There are also some approaches that have utilized spatial
indices for distributing the data among peers (refer to Table
5). Spatial indices, including Hilbert curves [21], Z-curves
[102], k-d tree [1028], MX-CIF quadtree [99], R-tree [106],
and R*-tree [104], have the capability to logically organize a
d-dimensional index space over a single DHT key space. SFC-
based indices, including Hilbert curves and Z-curves, have
issues with routing load balance in case of a skewed index dis-
tribution. However, as the authors point out, SFC index load
can be balanced through external techniques. In the case of
Hilbert curves, dynamic techniques such as node virtualization
and load partitioning with neighbor peers are utilized for this
purpose. In the XenoSearch-II system Hilbert curves are uti-
lized for mapping the d-dimensional index space to the 1d key
space of Chord. However, XenoSearch-II does not propose
any technique to counter load imbalance among peers.

The indexing approach based on Z-curves required an
external load balancing technique. In the same work they
introduced a P2P version of a k-d tree. This approach also has
routing load-balance issues that need to be addressed. In
another recent work, an MX-CIF quadtree-based spatial index
has been proposed. DragonFly utilizes an index similar to the
MX-CIF quadtree with the difference that it does not allow
recursive decomposition of index space. Instead, the index
cells are split as they exceed the preconfigured load threshold
value (similar to Meghdoot). The authors argue that their
approach does not require explicit load balancing algorithms
in contrast to that of the others. The P2P-based R*-tree index
in [104] uses CAN as the routing space. The index space is
partitioned among super-peers and passive peers. The bulk of
the query load is handled by the super-peers in the network
similar to the Gnutella [39] system.

Meghdoot does not utilize any spatial index for organizing
a d-dimensional data set. Instead, it utilizes a basic 2d CAN
space for indexing a d-dimensional data set. Furthermore,
Meghdoot incorporates a dynamic technique to counter the
data skew issue. The load balancing technique in Meghdoot
splits an overloaded index cell (zone) among lightly loaded
peers. The P2P R-tree index divides the d-dimensional
attribute space into a set of blocks (similar to the MX-CIF
quadtree index); these blocks form the root of the distributed
index tree. The work also includes a dynamic load division
technique in case a peer index cell gets overloaded. However,
this is an early work, and does not provide any bounds on
messages and routing hops required in a d-dimensional index
search.

To summarize, spatial indices are better suited to handling
the complexity of grid resource queries than 1d data indices
(as proposed in P-tree, MAAN, XenoSearch, etc.). However,
even spatial indices have routing load balance issues in case of
a skewed data set. Nevertheless, they are more scalable in
terms of the number of hops and messages generated while
searching in a d-dimensional space.

SECURITY AND TRUST ISSUES IN
PEER-TO-PEER SYSTEMS

The peer-to-peer nature of a distributed system raises serious
challenges in the domains of security and trust management.
Implementing a secure decentralized grid system requires
solutions that can efficiently facilitate the following: preserve
the privacy of participants, ensure authenticity of the partici-

IEEE Communications Surveys & Tutorials • 2nd Quarter 200828

pants, robust authorization, securely route messages between
distributed services, and minimize loss to the system due to
malicious participants.

The privacy of the participants can be ensured through
secret key-based symmetric cryptographic algorithms such as
3DES, RC4 etc. These secret keys must be securely generated
and distributed in the system. Existing key management sys-
tems such as public key algorithms (including DH, RSA, ellip-
tic) and Kerberos (trusted third party) can be utilized for this
purpose. Authentication of the participants can be achieved
through trust enforcement mechanisms such as X.509 certifi-
cates (public key infrastructure) [127], Kerberos (third party
authentication), distributed trust, and SSH. Authentication
based on X.509 certificates warrants a trusted certifying
authority (CA) in the system.

A grid participant presents an X.509 certificate along with
an associated private key (the combination of these entities
forms a system-wide unique credential) in order to authenti-
cate itself with a remote service. A system can have a single
CA that is trusted by all the participants. However, the single
CA approach has limited scalability. An alternative to this is
to have multiple CAs combining together to form a trust
chain. In this case a certificate signed by any CA in the system
has global validity. The GSI [128] implementation of PKI sup-
ports dynamic trust chain creation through the Community
Authorization Service (CAS) [129]. This is based on the policy
that two participants bearing proxy certificates signed by the
same user will inherently trust each other. A Kerberos-based
implementation has significant shortcomings as it requires
synchronous communication with the ticket granting server in
order to set up communication between a client and server. If
the ticket granting server goes offline or has a security breach,
there is no way the system can operate. In an X.509-based
implementation, a CA can certify the credentials offline.

Having said that, a majority of implementations do rely on
centralized trust enforcement entities such as a CA or a ticket
granting authority. The JXTA [130] system provides a com-
pletely decentralized X.509-based PKI. Each JXTA peer is its
own CA and issues a certificate for each service it offers. Peer
CA certificates are distributed as part of the service advertise-
ment process. Each of the CA certificate is verified via the
Poblano: “web of trust,” a distributed reputation management
system. A similar distributed trust mechanism called PeerRe-
view [131] has also been proposed. These distributed trust
management systems deter malicious participants through
behavioral auditing. An auditor node A checks if it agrees
with the past actions of an auditee node B. In case of dis-
agreement, A broadcasts an accusation of B. Interested third
party nodes verify evidence and take punitive action against
the auditor or auditee.

The SSH-based authentication scheme is comparatively
easier to implement as it does not require trusted third party
certification. However, it does not allow the creation of a
dynamic trust chain, and if a participant’s private key is com-
promised, it requires every public key holder to be informed
of this event. PlanetLab utilizes SSH-based authentication
wherein the centralized PlanetLab Central service is responsi-
ble for distribution or copying of the keys. Unlike X.509 and
Kerberos implementation, SSH does not support certificate
translation (i.e., from X.509 to Kerberos or vice versa). Trans-
port layer security protocols such as TLS [132] and SSL [133]
are used for message encryption and integrity checking as they
are transported from one host to the other on the Internet.

Authorization deals with the verification of an action a
participant is allowed to undertake after a successful authenti-
cation. In a grid site owners have the privilege to control how
their resources are shared among participants The resource

sharing policy takes into account the participant’s identity and
membership in groups or virtual organizations. Globus-based
grid installation defines the access control list using a Gridmap
file. This file simply maintains a list of the distinguished
names of the grid users and the equivalent local user account
names to which they are to be mapped. Access control to a
resource is then left up to the local operating system and
application access control mechanisms.

Implementing a secure and trusted routing [134] primitive
requires a solution to the following problems: secure genera-
tion and assignment of node IDs, securely maintaining the
integrity of routing tables, and secure message transmission
between peers. Secure node ID assignment ensures that an
attacker or a malicious peer cannot choose the value of node
IDs that can give it membership in the overlay. If the node
assignment process is not secure, an attacker could sniff into
the overlay with a chosen node ID and get control over the
local objects, or influence all traffic to and from the victim
node. The node ID assignment process is secured by delegat-
ing this capability to a central trusted authority. A set of trust-
ed CAs are given the capability to assign node IDs to peers
and sign node ID certificates, which bind a random node ID
to the public key that uniquely identifies a peer and an IP
address. The CAs ensure that node IDs are chosen randomly
from the ID space, and prevent nodes from forging node IDs.
Furthermore, these certificates give the overlay a public key
infrastructure, suitable for establishing encrypted and authen-
ticated channels between nodes. Secure message forwarding
on the Internet can be achieved through secure transport
layer connections such as TLS and SSL.

RECOMMENDATIONS

The surveyed DHT-based index services provide the basic
platform for organizing and maintaining a decentralized grid
resource discovery system. A grid system designer should fol-
low a layered approach such as OPeN [99] in architecting and
implementing a resource discovery system. The OPeN archi-
tecture consists of three layers: the application, core services,
and connectivity layers. The application layer implements all
the logic that encapsulates the query requirements of the
underlying grid computing environment (the computational
grids, data grids, etc.). The core services layer undertakes the
tasks related to consistency management of virtual d-dimen-
sional indices. The connectivity layer provides services related
to key-based routing, overlay management, and replica place-
ment. The application service, in conjunction with the core
services, undertakes the resource discovery tasks including dis-
tributed information updates, lookups, and virtual index con-
sistency management. The management of application and
ccore services layers can be delegated to a component of bro-
ker software. We refer to this broker component as a grid peer
service. Maintenance of the connectivity layer can be left to
the basic DHT implementations such as FreePastry4 and
OpenDHT [135]. For further information, interested readers
can refer to one of our recent works, such as [136], which uti-
lizes a spatial publish/subscribe index [98] to facilitate a
decentralized grid resource discovery system.

We recommend to grid system developers that for imple-
menting the core services layer they utilize the spatial indices
surveyed in this article. Overall, spatial indices are superior to
1d indices as they incur fewer messages for d-dimensional
object lookups and updates. Although there are different

4 FreePastry is an open source implementation of Pastry.

IEEE Communications Surveys & Tutorials • 2nd Quarter 2008 29

trade-offs involved with each of the spatial indices, basically
they can all support scalability and grid resource indexing. A
given spatial index would perform optimally in one scenario,
but the performance could degrade if the data distribution
changed significantly.

OPEN ISSUES

Peer-to-peer-based organization of grid resource discovery
services promises an attractive and efficient solution to over-
come the current limitations associated with the centralized
and hierarchical model. However, the P2P nature of the sys-
tem raises other serious challenges, including security [137],
trust, reputation, and interoperational ability between dis-
tributed services. Enforcing trust among peers (a component
of grid broker service) that host the indexing services warrants
robust models for managing a peer’s reputation and secure
communication. A majority of the current solutions for securi-
ty and trust management rely on centralized trust manage-
ment entities such as CAs and ticket granting authorities.
Achieving a completely decentralized security infrastructure is
certainly a challenging future research direction. Recent
efforts in this direction include emergence of distributed trust
management systems such as PeerReview and Poblano. How-
ever, these trust management systems rely on behavioral
auditing of the participant, and the distributed auditing pro-
cess can take a while until a malicious participant is identified
and shunted out of the system. This delay can allow ample
opportunity for the malicious participant to effect significant
harm on the system.

The current models of distributed systems, including grid
computing and P2P, computing suffer from a knowledge and
resource fragmentation problem. By knowledge fragmenta-
tion, we mean that various research groups in both academia
and industry work in an independent manner. They define
standards without any proper coordination. They give very lit-
tle attention to the interoperatibility between related systems.
Such disparity can be seen in the operation of various grid
systems including Condor-G, Nimrod-G, OurGrid, Grid-Fed-
eration, Tycoon, and Bellagio. These systems define indepen-
dent interfaces, communication protocols, superscheduling,
and resource allocation methodologies. In this case users have
access to only those resources that can understand the under-
lying grid system protocol. Hence, this leads to the distributed
resource fragmentation problem.

A possible solution to this can be federating these grid sys-
tems based on universally agreed standards (similar to the
TCP/IP model that governs the current Internet). The core to
the operation and interoperability of the Internet component
is the common resource indexing system, DNS. Both the grid
and P2P communities clearly lack any such global or widely
accepted service. These systems do not expose any API or
interfaces that can help them interoperate. In recent times we
have seen some efforts toward developing a generic grid ser-
vice-oriented architecture, more commonly referred to as
open grid service architecture (OGSA). Core grid developers
also define common standards through the GGF. The Web
service resource framework (WSRF) defines a new set of
specifications for realizing the OGSA vision of grid and Web
services. The WSRF can overcome the cross-platform interop-
erational ability issues in grid computing. However, it still can-
not glue the gaps between various grid systems because of the
basic differences in interfaces, communication protocols,
superscheduling, and resource allocation methodologies.

Possible solutions to overcome knowledge and resource
fragmentation include:

• Availability of a robust, distributed, scalable resource
indexing/organization system;

• Evolution of common standards for resource allocation
and application superscheduling;

• Agreement on using common middleware for managing
grid resources such as clusters and SMPs;

• Defining common interfaces and APIs that can help dif-
ferent related systems to interoperate and coordinate
activities.

SUMMARY AND CONCLUSION

In the recent past we have observed an increase in the com-
plexity involved with grid resources, including their manage-
ment policies, organization, and scale. Key elements that
differentiate a computational grid system from a PDCS
include:
• Autonomy;
• Decentralized ownership;
• Heterogeneity in management policies, resource types,

and network interconnect;
• Dynamicity in resource conditions and availability.
Traditional grid systems [12, 14, 138] based on centralized
information services are proving to be a bottleneck with
regard to scalability, fault tolerance, and mechanism design.
To address this, P2P-based resource organization is being
advocated. P2P organization is scalable, adaptable to dynamic
network conditions, and highly available.

In this work we present a detailed taxonomy that charac-
terizes issues involved in designing a P2P/decentralized GRIS.
We classify the taxonomies into two sections: resource taxono-
my and P2P taxonomy. Our resource taxonomy highlights the
attributes related to a computational grid resource. Further-
more, we summarize different kinds of queries that are being
used in current computational grid systems. In general, grid
superscheduling query falls under the category of d-dimen-
sional point or window query. However, it still remains to be
seen whether a universal grid resource query composition lan-
guage is required to express different kinds of grid RLQs and
RUQs.

We present classification of P2P approaches based on
three dimensions: P2P network organization, approaches to
distribution of data among peers, and routing of d-dimension-
al queries. In principle, a data distribution mechanism directly
dictates how a query is routed among relevant peers. A d-
dimensional resource index is distributed among peers by uti-
lizing data structures such as SFCs, quadtrees, R-trees, and
Kd-trees. Some of the approaches have also modified existing
hashing schemes to facilitate the one-dimensional range
queries in a DHT network. Every approach has its own merits
and limitations. Some of these issues are highlighted in the
resource and P2P network organization taxonomy section.

ACKNOWLEDGMENTS

First, we should like to acknowledge the authors of the papers
whose work has been surveyed and utilized in developing the
taxonomy in this article. We thank our group members at the
University of Melbourne — Marcos Assuncao, Al-Mukaddim
Khan Pathan, Xingchen Chu and Md Mustafizur Rahman —
for their comments. We should also like to thank Adriana
Iamnitchi (assistant professor, computer science and engineer-
ing, University of South Florida), Jon Crowcroft (professor of
communications systems in the Computer Laboratory at the
University of Cambridge), David Spence (CCLRC Rutherford
Appleton Laboratory, e-Science Center, Oxford), and Manish

IEEE Communications Surveys & Tutorials • 2nd Quarter 200830

Parashar (professor of electrical and computer engineering,
Rutgers University) for their valuable feedback on the initial
version of the article. Special thanks to Dr. Tejal Shah, Krish-
na Nandiminti, and Hussein Gibbins for proofreading the arti-
cle. Both Krishna and Hussein work as research programmers
in the GRIDS Laboratory, University of Melbourne. We are
also grateful to the Department of Education, Science and
Training (DEST), Australian Government, and the University
of Melbourne for funding the Ph.D. candidature of Rajiv
Ranjan. This work is also supported through an Australian
Research Council discovery project grant. We would also like
to thank the anonymous reviewers for their constructive com-
ments that have helped us in improving the quality of our pre-
sentation substantially.

REFERENCES

[1] D.S. Milojicic et al., “Peer-to-Peer Computing,” Tech. rep. HPL-
2002-57, HP Labs, 2002.

[2] N. F. Noy, “Semantic Integration: A Survey of Ontology-Based
Approaches,” SIGMOD Records, vol. 33, no. 4, 2004, pp. 65–70.

[3] M. Satyanarayanan, “Pervasive Computing: Vision and Challenges,”
IEEE Personal Commun.,vol. 8, no. 4, 2001, pp. 10–17.

[4] D. Barbara, “Mobile Computing and Databases-A Survey,” IEEE
Trans. Knowledge and Data Eng., vol. 11, no. 1, 1999, pp.
108–17.

[5] G. H. Forman and J. Zahorjan, The Challenges of Mobile Com-
puting, vol. 27, no. 4, 1994, pp. 38–47.

[6] I. Foster and C. Kesselman, The Grid: Blueprint for a New
Computing Infrastructure, Morgan Kaufmann, 1998.

[7] C. S. Yeo et al., “Utility Computing on Global Grids, Handbook
of Computer Networks,” H. Bidgoli, Ed., Wiley, Apr. 2006.

[8] J. M. Schopf, “Ten Actions When Superscheduling,” Global
Grid Forum, 2001.

[9] R. Ranjan, R. Buyya, and A. Harwood, “A Case for Cooperative
and Incentive Based Coupling of Distributed Clusters,” Proc.
7th IEEE Int’l Conf. Cluster Computing, Boston, MA, 2005.

[10] N. Andrade et al., “OurGrid: An Approach to Easily Assemble
Grids with Equitable Resource Sharing,” Proc. 9th Wksp. Job
Scheduling Strategies for Parallel Processing, LNCS, Springer.

[11] H. Shan, L. Oliker, and R. Biswas, “Job Superscheduler Archi-
tecture and Performance in Computational Grid Environ-
ments,” Proc. ACM/IEEE Conf. Supercomputing, 2003, p. 44.

[12] D. Abramson, R. Buyya, and J. Giddy, “A Computational
Economy for Grid Computing and Its Implementation in the
Nimrod-G Resource Broker,” Future Generation Comp. Sys. J.,
vol. 18, no. 8, Oct., 2002, pp. 1061–74.

[13] S. Venugopal, R. Buyya, and L. Winton, “A Grid Service Bro-
ker for Scheduling Distributed e-Science Applications on Global
Data Grids,” Concurrency and Computation: Practice and
Experience, vol. 18, no. 6, 2006, pp. 685–99.

[14] J. Frey et al., “Condor-G: A Computation Management Agent
for Multi-Institutional Grids,” Proc. 10th IEEE Int’l Symp. High
Performance Distrib. Computing, 2001, pp. 237–46.

[15] J. Yu and R. Buyya, “A Novel Architecture for Realizing Grid
Workflow Using Tuple Spaces,” Proc. 5th IEEE/ACM Grid
Wksp., 2004, pp. 119–28.

[16] T. Fahringer et al., “Askalon: A Tool Set for Cluster and Grid
Computing,” Concurrency and Computation: Practice and
Experience, vol. 17, no. 2–4, pp. 143–69, 2005.

[17] M. Cai et al., “Maan: A Multi-Atribute Addressable Network
for Grid Information Services,” Proc. 4th IEEE/ACM Int’l Wksp.
Grid Computing, 2003, pp. 184–91.

[18] A. Iamnitchi and I. Foster, A Peer-to-Peer Approach to
Resource Location in Grid Environments, 2004, pp. 413–29.

[19] K. Czajkowski et al., “Grid Information Services for Distribut-
ed Resource Sharing,” Proc. 10th IEEE Int’l Symp. High Perfor-
mance Distrib. Computin, 2001, pp. 181.

[20] J. Yu, S. Venugopal, and R. Buyya, “Grid Market Directory: A
Web and Web Services Based Grid Service Publication Directo-
ry,” J. Supercomputing, vol. 36, no. 1, 2006, pp. 17–31.

[21] C. Schmidt and M. Parashar, “Flexible Information Discovery
in Decentralized Distributed Systems,” Proc. 12th Int’l Symp.

High Performance Distrib. Computing, 2003.
[22] A. Andrzejak and Z. Xu, “Scalable, Efficient Range Queries for

Grid Information Services,” Proc. 2nd IEEE Int’l Conf. Peer-to-
Peer Computing, 2002.

[23] D. Ouelhadj et al., “A Multi-Agent Infrastructure and a Service
Level Agreement Negotiation Protocol for Robust Scheduling in
Grid Computing,” Proc. European Grid Conf., LNCS, 2005.

[24] K. Czajkowski, I. Foster, and C. Kesselman, “Agreement-Based
Resource Management,” Proc. IEEE, vol. 93, no. 3, Mar. 2005..

[25] C. Courcoubetis and V. Siris, “Managing and Pricing Service
Level Agreements for Differentiated Services,” Proc. 6th
IEEE/IFIP Int’l Conf. QoS, London, U.K., May–June 1999.

[26] R. Ranjan, A. Harwood, and R. Buyya, “A SLA-Based Coordi-
nated Superscheduling Scheme and Performance for Computa-
tional Grids,” Tech. rep., GRID S-TR-2006-8, Grid Comp. and
Distrib. Sys. Lab., Univ. of Melbourne, Australia, 2006.

[27] J. Litzkow et al., “Condor — A Hunter of Idle Workstations,”
Proc. 8th IEEE Int’l Conf. Distrib. Computing Sys., 1988.

[28] B. Bode et al., “PBS: The Portable Batch Scheduler and the
Maui Scheduler on Linux Clusters,” Proc. 4th Linux Showcase
and Conf., Atlanta, GA, Oct. 2000.

[29] W. Gentzsch, “Sun Grid Engine: Towards Creating a Compute
Power Grid,” Proc. 1st IEEE Int’l Symp. Cluster Computing and
the Grid, Brisbane, Australia, 2001.

[30] S. Chapin, J. Karpovich, and A. Grimshaw, “The Legion Resource
Management System,” Proc. 5th Wksp. Job Scheduling Strategies
for Parallel Processing, San Juan, P.R., Apr. 1999.

[31] A. Luther et al., “Peer-to-Peer Grid Computing and a NET-Based
Alchemi Framework,” High Performance Computing: Paradigm
and Infrastructure, L. Yang and M. Guo, Eds., Wiley, 2004.

[32] S. Zhou, “LSF: Load Sharing in Large-Scale Heterogeneous
Distributed Systems,” Proc. Wksp. Cluster Computing, Tallahas-
see, FL, 1992.

[33] K. Krauter, R. Buyya, and M. Maheswaran, “A Taxonomy and
Survey of Grid Resource Management Systems for Distributed
Computing,” Software Practice and Experience, vol. 32, no. 2,
2002, pp. 135–64.

[34] K. Lai, B. A. Huberman, and L. Fine, “Tycoon: A Distributed
Market-Based Resource Allocation System,” Tech. rep., HP
Labs, 2004.

[35] X. Zhang, J. L. Freschl, and J. M. Schopf, “A Performance
Study of Monitoring and Information Services for Distributed
Systems,” Proc. 12th Int’l Conf. High Performance Distrib.
Computing, June 2003.

[36] S. Zanikolas and R. Sakellariou, “A Taxonomy of Grid Moni-
toring Systems,” Future Generation Comp. Sys. J., vol. 21, no.
1, Jan. 2005, pp. 163–88.

[37] S. Fitzgerald et al., “A Directory Service for Configuring High-
Performance Distributed Computations,” Proc. 6th IEEE Symp.
High Performance Distrib. Computing, 1997, pp. 365–75.

[38] F. D. Sacerdoti et al., “Wide Area Cluster Monitoring with
Ganglia,” Proc. 5th IEEE Int’l Conf. Cluster Computing, Tsim
Sha Tsui, Kowloon, Hong Kong, 2003.

[39] Y. Chawathe et al., “Making gnutella-Like P2P Systems Scal-
able,” SIGCOMM ‘03, 2003, pp. 407–18.

[40] I. Stoica et al., “Chord: A Scalable Peer-to-Peer Lookup Service for
Internet Applications,” SIGCOMM ‘01, 2001, pp. 149–60.

[41] S. Ratnasamy et al., “A Scalable Content-Addressable Net-
work,” SIGCOMM ’01, 2001, pp. 161–72.

[42] A. Rowstron and P. Druschel, “Pastry: Scalable, Decentralized
Object Location, and Routing for Large-Scale Peer-to-Peer Sys-
tems,” Proc. IFIP/ACM Int’l Conf. Distrib. Sys. Platforms, Heidel-
berg, Germany, 2001, pp. 329–59.

[43] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph, “Tapestry: An
Infrastructure for Fault-Tolerant Wide-Area Location and Rout-
ing,” Tech. rep. UCB/CSD-01-1141, UC Berkeley, Apr. 2001.

[44] R. Huebsch et al., “Querying the Internet with Pier,” Proc.
19th Int’l Conf. Very Large Databases, Berlin, Germany, Sept.
2003.

[45] M. Castro et al., “Scribe: A Large-Scale and Decentralized
Application Level Multicast Infrastructure,” IEEE JSAC, vol. 20,
no. 8, 2002, pp. 1489–99.

[46] A. Mislove et al., “Experiences in Building and Operating
Epost, a Reliable Peer-to-Peer Application,” Proc. EuroSys
Conf., Leuven, Belgium, 2006, pp. 147–59.

IEEE Communications Surveys & Tutorials • 2nd Quarter 2008 31

[47] M. Balazinska, H. Balakrishnan, and D. Karger, “INS/Twine: A Scal-
able Peer-to-Peer Architecture for Intentional Resource Discovery,”
Proc. 1st Int’l Conf. Pervasive Computing, 2002, pp. 195–210.

[48] A. S. Cheema, M. Muhammad, and I. Gupta, “Peer-to-Peer
Discovery of Computational Resources for Grid Applications,”
Proc. 6th IEEE/ACM Int’l Wksp. Grid Computing, 2005.

[49] Y. M. Teo, V. Mar., and X. Wang, “A DHT-Based Grid Resource
Indexing and Discovery Scheme,” Singapore-MIT Alliance
Annual Symp., 2005.

[50] D. Oppenheimer et al., “Design and Implementation Trade-
Offs for Wide-Area Resource Discovery,” Proc. 14th IEEE Symp.
High Performance, Research Triangle Park, NC, July, 2005.

[51] F. Dabek et al., “Wide-Area Cooperative Storage with CFS,”
Proc. 18th ACM Symp. Op. Sys. Principles, Banff, Alberta,
2001, pp. 202–15.

[52] A. Crainiceanu et al., “Querying Peer-to-Peer Networks Using P-
Trees,” Proc. 7th Int’l Wksp. Web and Databases,2004, pp. 25–30.

[53] A. R. Bharambe, M. Agrawal, and S. Seshan. “Mercury: Sup-
porting Scalable Multi-Attribute Range Queries,” SIGCOMM
’04, Portland, OR, 2004, pp. 353–66.

[54] S. Ramabhadran et al., “Brief Announcement: Prefix Hash
Tree,” Proc. ACM PODC ’04, St. Johns, Canada, 2004.

[55] D. Spence and T. Harris, “Xenosearch: Distributed Resource
Discovery in the Xenoserver Open Platform,” Proc. 12th IEEE
Int’l Conf. High Performance Distrib. Computing, 2003, p. 216.

[56] F. Bonnassieux, R. Harakaly, and P. Primet, “MapCenter: An
Open Grid Status Visualization Tool,” Proc. ICSA 15th Int’l
Conf. Parallel and Distrib. Computing Sys., Louisville, KY, 2002.

[57] S. Andreozzi et al., “GridICE: A Monitoring Service for Grid
Systems,” Future Generation Comp. Sys., vol. 21, no. 4, 2005,
pp. 559–71.

[58] R. L. Ribler, “Autopilot: Adaptive Control of Distributed Appli-
cations,” Proc. 7th Int’l Symp. High Performance Distrib. Com-
puting, 1998, pp. 172–79.

[59] W. Smith. A System for Monitoring and Management of
Computational Grids,” Proc. 31st IEEE Int’l Conf. Parallel Pro-
cessing, 2002.

[60] M. Baker and G. Smith, “GridRM: A Resource Monitoring
Architecture,” Proc. 3rd Int’l Wksp. Grid Computing, LNCS,
Springer, 2002, pp. 268–73.

[61] P. Stelling et al., “A Fault Detection Service for Wide Area
Distributed Computations,” Proc. 7th IEEE Int’l Conf. High Per-
formance Distrib. Computing, 1998, p. 268.

[62] Z. Balaton et al., “From Cluster Monitoring to Grid Monitoring
Based on GRM,” Proc. 7th Int’l Euro-Par Conf., 2001, pp. 874–81.

[63] D. Gunter et al., “Netlogger: A Toolkit for Distributed System
Performance Analysis,” Proc. 8th IEEE Int’l Symp. Modeling,
Analysis and Simulation of Comp. and Telecommun. Sys.,
2000, pp. 267.

[64] R. Wolski, N. Spring, and C. Peterson, “Implementing a Per-
formance Forecasting System for Metacomputing: The Net-
work Weather Service,” Supercomputing ‘97, 1997, pp. 1–19.

[65] R. Wismuller, J. Trinitis, and T. Ludwig, “OCM-A Monitoring
System for Interoperable Tools,” Proc. SIGMETRICS Symp. Par-
allel and Distrib. Tools, 1998, pp. 1–9.

[66] P. A. Dinda et al., “The Architecture of the Remos System,”
Proc. 10th IEEE Int’l Symp. High Performance Distrib. Comput-
ing, 2001, p. 252.

[67] H. L. Truong and T. Fahringer, “SCALEA-G: A Unified Moni-
toring and Performance Analysis System for the Grid,” LNCS,
2004, pp. 202–11.

[68] H.B. Newman et al., “MonALISA: A Distributed Monitoring
Service Architecture,” 2003.

[69] B. P. Miller et al., “The Paradyn Parallel Performance Measure-
ment Tool,” IEEE Computer, vol. 28, no. 11, 1995, pp. 37–46.

[70] B. Tierney et al., “A Grid Monitoring Architecture,” Global
Grid Forum, 2002.

[71] S. Waterhouse et al., “Distributed Search in P2P Networks,”
IEEE Internet Computing, vol. 06, no. 1, 2002, pp. 68–72.

[72] I. Clarke et al., “Freenet: A Distributed Anonymous Informa-
tion Storage and Retrieval System,” Proc. Int’l Wksp. Designing
Privacy Enhancing Technologies, 2001, pp. 46–66.

[73] S. Saroiu, P. Gummadi, and S. Gribble, “A Measurement
Study of Peer-to-Peer File Sharing Systems,” Proc. 19th ACM
Symp. Op. Sys. Principles, 2003.

[74] G. Pallis and A. Vakali, “Insight and Perspectives for Content
Delivery Networks,” Commun. ACM, vol. 49, no. 1, 2006, pp.
101–06.

[75] A. Raza Butt, R. Zhang, and Y. C. Hu, “A Self-Organizng Flock of
Condors,” Proc. 2003 ACM/IEEE Conf. Supercomputing, 2003.

[76] I. Foster and C. Kesselman, “Globus: A Metacomputing Infra-
structure Toolkit,” Int’l J. Supercomputer Apps., vol. 11, no. 2,
1997, pp. 115–28.

[77] P. Druschel and A. Rowstron, “Storage Management and
Caching in Past, A Large-Scale, Persistent Peer-to-Peer Storage
Utility,” Proc. 18th ACM Symp. Op. Sys. Principles, Banff,
Alberta, Canada, 2001, pp. 188–201.

[78] J. Kubiatowicz et al., “Oceanstore: An Architecture for Glob-
al-Scale Persistent Storage,” SIGPLAN Notes, vol. 35, no. 11,
2000, pp. 190–201.

[79] R. Raman, M. Livny, and M. Solomon, “Matchmaking: Dis-
tributed Resource Management for High Throughput Comput-
ing,” Proc. 7th IEEE Int’l Symp. High Performance Distrib.
Computing, 1998, p. 140.

[80] R. L. Rivest, “Partial Match Retrieval Algorithms,” SIAM J.
Computing, vol. 5, no. 1, 1976, pp. 19–50.

[81] K. A. Berman and J. L. Paul, Fundamentals of Sequential and
Parallel Algorithms, PWS, 1997.

[82] T. H. Cormen et al., Introduction to Algorithms, 2nd ed., MIT
Press, 2001.

[83] M. A. Jovanovic, F. S. Annexstein, and K. A. Berman, “Scala-
bility Issues in Large Peer-to-Peer Networks — A Case Study of
Gnutella,” Tech. rep., Univ. Cincinnati, 2001.

[84] K. Calvert, M. Doar, and E. W. Zegura, “Modeling Internet
Topology,” IEEE Commun. Mag., June 1997.

[85] Q. Lv et al., “Search and Replication in Unstructured Peer-to-
Peer Networks,” Proc. 16th Int’l Conf. Supercomputing, 2002,
pp. 84–95.

[86] H. Balakrishnan et al., “Looking Up Data in P2P Systems,”
Commun. ACM, vol. 46, no. 2, 2003, pp. 43–8.

[87] S. Bakhtiari, R. Safavi-Naini, and J. Pieprzyk, “Cryptographic
Hash Functions: A Survey, Citeseer,” ist.psu.edu/bakhtiari95
cryptographic.html, 1995.

[88] D. Karger et al., “Consistent Hashing and Random Trees: Dis-
tributed Caching Protocols for Relieving Hot Spots on the
World Wide Web,” Proc. 29th Ann. ACM Symp. Theory of
Computing, El Paso, TX, 1997, pp. 654–63.

[89] B. Preneel, “The State of Cryptographic Hash Functions,” Lectures
on Data Security, Modern Cryptology in Theory and Practice, Sum-
mer School, Aarhus, Denmark, July 1998, 1999, pp. 158–82.

[90] K. Lua et al., “A Survey and Comparison of Peer-to-Peer Overlay
Network Schemes,” IEEE Commun. Surveys and Tutorials, 2005.

[91] R. Ranjan, A. Harwood, and R. Buyya, “A Taxonomy of Peer-
to-Peer Based Complex Queries: A Grid Perspective,” http://
arxiv.org/abs/cs/0610163, 2006.

[92] J. Li et al., “Comparing the Performance of Distributed Hash
Tables Under Churn,” Proc. 3rd Int’l Wksp. Peer-to-Peer Sys.,
Feb. 2004.

[93] M. Castro, M. Costa, and A. Rowstron, “Should We Build
Gnutella On A Structured Overlay?” SIGCOMM Comp. Com-
mun. Rev., vol. 34 no. 1, 2004, pp. 131–36.

[94] P. Linga et al., “Building An Efficient and Stable P2P DHT
Through Increased Memory and Background Overhead,” Proc.
2nd Int’l Wksp. Peer-to-Peer Sys., 2003.

[95] A. Gupta, B. Liskov, and R. Rodrigues, “One Hop Lookups for
Peer-to-Peer Overlays,” Proc. 9th Wksp. Hot Topics in Op. Sys.,
Lihue, HI, May, 2003, pp. 7–12.

[96] D. Spence et al., “Location Based Placement of Whole Dis-
tributed Systems,” Proc. ACM Conf. Emerging Network Experi-
ment and Tech., Toulouse, France, 2005, pp. 124–34.

[97] J. Gao and P. Steenkiste, “An Adaptive Protocol for Efficient
Support of Range Queries in DHT-Based Systems,” Proc. 12th
IEEE Int’l Conf. Network Protocols, 2004, pp. 239–50.

[98] L. Chan and S. Karunasekera, “Designing Configurable Pub-
lish-Subscribe Scheme for Decentralized Overlay Networks,”
AINA’07, Proc. IEEE 21st Int’l Conf. Advanced Info. Networking
and Apps., May 2007.

[99] E. Tanin, A. Harwood, and H. Samet. A Distributed Quadtree
Index for Peer-to-Peer Settings,” Proc. Int’l Conf. Data Eng.,
2005, pp. 254–55.

IEEE Communications Surveys & Tutorials • 2nd Quarter 200832

[100] P. Triantafillou and I. Aekaterinidis, “Content-Based Publish/-
Subscribe Over Structured P2P Networks, “ Proc. 1st Int’l
Wksp. Discrete Event-Based Systems, 2004.

[101] D. Tam, R. Azimi, and H.A. Jacobsen, “Building Content-
Based Publish/Subscribe Systems with Distributed Hash
Tables,” Proc. Int’l Wksp. Databases, Info. Sys. and Peer-to-
Peer Computing, 2003.

[102] P. Ganesan, B. Yang, and H. Garcia-Molina, “One Torus to
Rule Them All: Multi-Dimensional Queries in P2P Systems,”
Proc. 7th Int’l Wksp. Web and Databases, Paris, France, 2004,
pp. 19–24.

[103] A. Gupta et al., “Meghdoot: Content-Based Publish/Sub-
scribe Over P2P Networks,” Proc. 5th ACM/IFIP/USENIX Int’l.
Conf. Middleware, 2004, pp. 254–73.

[104] B. Liu, W. Lee, and D. L. Lee, “Supporting Complex Multi-Dimen-
sional Queries in P2P Systems,” Proc. 25th IEEE Int’l Conf. Distrib.
Computing Sys., Columbus, OH, 2005, pp. 155–64.

[105] L. Gong, “JXTA: A Network Programming Environment,”
IEEE Internet Computing, IEEE Computer Society, Los Alamitos,
CA, vol. 05, no. 3, 2001, pp. 88–95.

[106] A. Mondal, Y. Lifu, and M. Kitsuregawa, “P2PR-Tree: An r-
tree-based Spatial Index for Peer-to-Peer Environments,” Proc.
Int’l Wksp. Peer-to-Peer Computing and Databases (held in
conjunction with EDBT), Springer-Verlag, 2004, pp. 516–25.

[107] S. Berchtold, C. Bohm, and Hans-Peter Kriegal, “The Pyra-
mid-Technique: Towards Breaking the Curse of Imensionality,”
Proc. 1998 ACM SIGMOD Int’l Conf. Mgmt. of Data, Seattle,
WA, 1998, pp. 142–53.

[108] V. Gaede and O. Gunther, “Multidimensional Access Methods,”
ACM Computing Surveys, vol. 30, no. 2, 1998, pp. 170–231.

[109] M. Bienkowski, M. Korzeniowski, and F. M. auf der Heide,
“Dynamic Load Balancing in Distributed Hash Tables,” 4th Int’l.
Wksp. Peer-to-Peer Sys., 2005, pp. 217–25.

[110] A. Rao et al., “Load Balancing in Structured P2P Systems,”
Proc. 2nd Int’l Wksp. Peer-to-Peer Sys., 2003.

[111] T. Asano et al., “Space-Filling Curves and Their Use in the
Design of Geometric Data Structures,” Theoretical Comp. Sci.,
vol. 181, no. 1, 1997, pp. 3–15.

[112] H. V. Jagadish, “Linear Clustering of Objects with Multiple
Attributes,” Proc. ACM Int’l Conf. Mgmt. of Data, Atlantic City,
NJ, 1990, pp. 332–42.

[113] J. Orenstein. A Comparison of Spatial Query Processing
Techniques for Native and Parameter Spaces,” Proc. ACM Int’l
Conf. Mgmt. of Data, Atlantic City, NJ, 1990, pp. 343–52.

[114] H. V. Jagadish, “Analysis of the Hilbert Curve for Represent-
ing Two-Dimensional Space,” Info. Processing Lett., vol. 62,
no. 1, 1997, pp. 17–22.

[115] F. Korn, B. Pagel, and C. Faloutsos, “On the ‘Dimensionality
Curse’ and the ‘Self-Similarity Blessing’,” IEEE Trans. Knowl-
edge and Data Eng., vol. 13, no. 1, 2001, pp. 96–11.

[116] H. Samet, The Design and Analysis of Spatial Data Struc-
tures, Addison-Wesley, 1989.

[117] M. J. Berger and S. H. Bokhari, “A Partitioning Strategy for
Non-Uniform Problems on Multiprocessors,” 1987.

[118] P. Ganesan, M. Bawa, and H. Garcia-Molina, “Online Balanc-
ing of Range-Partitioned Data with Applications to Peer-to-
Peer Systems,” Tech. rep., Stanford Univ., 2004.

[119] J. L. Bentley, “Multidimensional Binary Search Trees Used for
Associative Searching,” Commun. ACM, vol. 18, no. 9, 1975,
pp. 509–17.

[120] S. Hand et al., “Controlling the Xenoserver Open Platform,”
IEEE Conf. Open Architectures and Network Programming,
2003, pp. 3–11.

[121] D. Spence, “An Implementation of a Coordinate Based Location
System,” Tech. rep., Univ. of Cambridge Comp. Lab., 2003.

[122] J. Aspnes and G. Shah, “Skip Graphs,” Proc. 14th Annual
ACM-SIAM Symp. Discrete Algorithms, Baltimore, MD, 2003,
pp. 384–93.

[123] O. D. Sahin et al., “A Peer-to-Peer Framework for Caching
Range Queries,” Proc. 20th Int’l Conf. Data Eng., 2004, p. 165.

[124] N. Beckmann et al., “The r*-Tree: An Efficient and Robust
Access Method for Points and Rectangles,” Proc. 1990 ACM
SIGMOD Int’l Conf. Mgmt. of Data, 1990, pp. 322–31.

[125] B. Yang and H. Garcia-Molina, “Designing a Super-Peer Net-
work,” Proc. 19th IEEE Int’l Conf. Data Eng., 2003, p. 49.

[126] S. Rhea et al., “OpenDHT: A Public DHT Service and Its
Uses,” SIGCOMM ‘05, 2005, pp. 73–84.

[127] R. Housley et al., “Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile,” 2002.

[128] V.Welch et al., “Security for Grid Services,” Proc. 12th IEEE Int’l
Conf. High Performance Distrib. Computing, 2003, pp. 48–57.

[129] L. Pearlman et al., “A Community Authorization Service for
Group Collaboration,” Proc. 3rd Int’l Wksp. Policies for Distrib.
Sys. and Networks, 2002, pp. 50.

[130] W. Yeager and J. Williams, “Secure Peer-to-Peer Networking: The
JXTA Example,” IT Professional, vol. 4, no. 2, 2002, pp. 53–57.

[131] P. Durschel, “The Renaissance of Decentralized Systems,”
keynote talk, 15th IEEE Int’l Symp. High Performance Distrib.
Computing, Paris, France, 2006.

[132] P. Chown, “Advanced Encryption Standard (AES) Cipher-
suites for Transport Layer Security (TLS),” 2002.

[133] W. Chou, “Inside SSL: Accelerating Secure Transactions,” IT
Professional, vol. 4, no. 5, 2002, pp. 37–41.

[134] M. Castro et al., “Secure Routing for Structured Peer-to-Peer
Overlay Networks,” Op. Sys. Rev., vol. 36, no. SI, 2002, pp.
299–314.

[135] S. Ratnasamy, I. Stoica, and S. Shenker, “Routing Algo-
rithms for DHTS: Some Open Questions,” 1st Int’l. Wksp. Peer-
to-Peer Sys., 2002, pp. 45–52.

[136] R. Ranjan, “A Scalable, Robust, and Decentralized Resource
Discovery Service for Large Scale Federated Grids,” Tech. rep.
GRIDS-TR-2007-6, Grids Lab., CSSE Department, Univ. of Mel-
bourne, Australia, 2007.

[137] E. Sit and R. Morris, “Security Considerations for Peer-to-
Peer Distributed Hash Tables,” 1st Int’l Wksp. Peer-to-Peer Sys.,
2002, pp. 261–69.

[138] A. Auyoung et al., “Resource Allocation in Federated Dis-
tributed Computing Infrastructures,” Proc. 1st Wksp. Op. Sys.
and Architectural Support for the On-Demand IT Infra-
structure, Boston, MA, Oct. 2004.

BIOGRAPHIES

RAJIV RANJAN (rranjan@csse.unimelb.edu.au) is a final-year Ph.D.
student in the Peer-to-Peer and Grids Laboratory at the University
of Melbourne, Australia. Prior to beginning work on his Ph.D., he
completed a Bachelor's degree securing first rank in the Computer
Engineering Department (North Gujarat University, India) in 2002.
He has worked as a research assistant (honors project) at the
Physical Research Laboratory (a unit of the Department of Space,
Government of India), Ahmedabad, Gujarat, India. He was also a
lecturer in the Computer Engineering Department of Gujarat Uni-
versity, where he taught undergraduate computer engineering
courses including systems software, parallel computation, and
advance operating systems. His current research interest lies in
the algorithmic aspects of resource allocation and resource dis-
covery in decentralized grid and peer-to-peer computing systems.
He has served as a reviewer for journals including Future Genera-
tion Computer Systems, Journal of Parallel and Distributed Com-
puting, IEEE Internet Computing, and IEEE Transactions on
Computer Systems. He has also served as an external reviewer for
conferences including IEEE Peer-to-Peer Computing (’04, ’05, ’06),
IEEE/ACM Grid Computing ’06, and Parallel and Distributed Com-
puting, Applications and Technologies ’07).

AARON HARWOOD (aharwood@csse.unimelb.edu.au) completed his
Ph.D. degree at Griffith University on high-performance intercon-
nection networks in 2002. During that time he worked on several
software projects including the development of a VLSI layout
package and integrated circuit fabrication virtual laboratory now
in use for classroom instruction. He has also worked at Research
Institute for Industrial Science and Technology (RIST), South
Korea, on computer simulation for a robot traffic light controller
system. He then joined the University of Melbourne as a lecturer
in the Department of Computer Science and Software Engineering
where his research focused on the topological properties and
software engineering of peer-to-peer systems for high-perfor-
mance computing. In 2003 he co-founded the Peer-to-Peer Net-
works and Applications Research Group (www.cs.mu.oz.au/p2p),
of which he is now acting director. He recently developed one of

IEEE Communications Surveys & Tutorials • 2nd Quarter 2008 33

the first parallel computing platforms for peer-to-peer networks.
He is a program committee member for the 6th IEEE/ACM Work-
shop on Grid Computing.

RAJKUMAR BUYYA (raj@csse.unimelb.edu.au) is a senior lecturer and
director of the Grid Computing and Distributed Systems Laborato-
ry within the Department of Computer Science and Software
Engineering at the University of Melbourne. He received his B.E
and M.E in computer science and engineering from Mysore and
Bangalore Universities in 1992 and 1995, respectively; and his
Ph.D. in computer science and software engineering from Monash
University, Melbourne, Australia, in April 2002. He was awarded
the Dharma Ratnakara Memorial Trust Gold Medal in 1992 for his
academic excellence at the University of Mysore, India. He
received Leadership and Service Excellence Awards from the
IEEE/ACM International Conference on High Performance Comput-
ing in 2000 and 2003. He has authored/co-authored over 130

publications. He has co-authored three books: Microprocessor x86
Programming (BPB Press, 1995), Mastering C++ (Tata McGraw
Hill, 1997), and Design of PARAS Microkernel. Books on emerging
topics he has edited include High Performance Cluster Computing
(Prentice Hall, 1999) and High Performance Mass Storage and Par-
allel I/O (IEEE and Wiley, 2001). He has also edited proceedings of
10 international conferences and served as guest editor for major
research journals. He is serving as an Associate Editor of Future
Generation Computer Systems: The International Journal of Grid
Computing: Theory, Methods and Application. He served as a
speaker with the IEEE Computer Society Chapter Tutorials Pro-
gram (1999–2001) and Founding Co-Chair of the IEEE Task Force
on Cluster Computing (TFCC), 1999–2004, and Interim Co-Chair of
the IEEE Technical Committee on Scalable Computing (TCSC),
2004–September 2005, and a member of Executive Committee of
the IEEE Technical Committee on Parallel Processing (TCPP),
2004–2005. He is currently serving as Elected Chair of the TCSC.

