
Capability Analysis of Cloud Resource Orchestration Frameworks

 Alireza Khoshkbarforoushha, Australian National University, Australia

 Meisong Wang, Australian National University, Australia

 Rajiv Ranjan, CSIRO, Australia

 Lizhe Wang, Chinese Academy of Sciences, China

 Leila Alem, CSIRO Computational Informatics, Australia

 Samee U. Khan, North Dakota State University, USA

 Boualem Benatallah, University of New South Wales, Australia

Abstract

 Since the inception of cloud computing in mid 2000, academic groups and industry vendors have developed a number of Cloud Re-

source Orchestration Frameworks (CROFs) for simplifying the application management. The CROF aids software engineers, scien-

tists, and infrastructure administrators to migrate and manage their in-house applications to cloud environments. Despite the higher

level of technical maturity of such CROFs, there is clear lack of study that can help cloud application administrators in understand-

ing and analyzing the features of CROFs against a common set of concepts and dimensions. Therefore, this study presents a set of

generic technical dimensions for clearly analyzing the capabilities of the overriding CROFs. A concise survey and classification of

most prominent research work is also presented.

Keywords: Cloud Computing, Cloud service management, Cloud resource orchestration.

1. Introduction

Cloud computing assembles a large network of virtualized services, namely: hardware resources (compute, storage,

network, etc.) and software resources (databases, message queuing systems, monitoring systems, load-balancers, etc.).

The new cloud computing ecosystem enables instant access to virtually unlimited software and hardware resources. It

offers a number of considerable advantages including no-upfront investment, lower operating cost, and infinite scalabil-

ity. However, orchestrating the right set of cloud resources for creating a Quality of Service (QoS) optimized applica-

tion architecture remains a challenging technical problem. In simple words, the cloud resource orchestration [1] is de-

fined as the process of Selection, Deployment, Monitoring, and Run-time Management of software and hardware

resources for ensuring that the applications meet the QoS targets, such as availability, throughput, latency, security,

cost, and reliability under uncertainties.

To simplify the process of resource orchestration, several academic groups and cloud computing vendors have devel-

oped a number of Cloud Resource Orchestration Frameworks (CROFs). For example, Amazon Web Services (AWS)

offers AWS Elastic Beanstalk, which is an easy-to-use CROF for deploying and scaling multi-tier Web applications de-

veloped with popular programming languages, such as Java, .NET, PHP, Node.js, Python and Ruby. Figure 1 illustrates

an instantiation of cloud orchestration operations in AWS.

Fig 1: How to deploy WordPress by using either the Amazon BeanSTalk (left hand side workflow) or Amazon CloudFormation

(right hand side sequence diagram)

Oayala1, as another point in case, has developed a CROF for delivering multimedia content online. At the infrastructure

layer, Ooyala’s CROF leverages AWS EC2 and S3 resources for content distribution and storage, respectively. Howev-

er, the problem here is that there may exist multiple CROFs from competing vendors and academic groups offering sim-

ilar (if not the same) set of functionalities. For example, any of the CROFs provided by RightScale, Bitnami, Engine

1 an international video technology platform and solutions company

Yard, CloudSwitch respectively could be used to manage Web applications over AWS and other public cloud infra-

structures. Similar competing CROFs, such as AWS CloudFront, Ooyala, MetaCDN, and Rackspace Cloud Files exist

for managing Content Delivery Network (CDN) applications. Therefore, it is clear that the diversity of offerings

makes the process (for software engineers, solution architects, or infrastructure administrators) of selecting the most

suitable CROF perplexing and a risky task, as wrong decisions could lead to vendor lock-in, poor application QoS, ex-

cessive costs, and unwanted administration overheads. Moreover, migration from one cloud to another is nontrivial, if

not impossible. Regardless of many cloud standardization projects2, the community has not yet defined a comprehen-

sive standard that covers all aspects and layers including Infrastructure as a Service (IaaS), Platform as a Service

(PaaS), and Software as a Service (SaaS) to mitigate the risk of lock-in for industries [2].

From service providers’ perspective, the fact that the existing composition and orchestration techniques have not been

adopted for cloud resource orchestration is no accident. The primary goal of most of these techniques has been to

achieve better productivity by automating structured processes handled by IT departments or professional programmers,

as in large enterprise business processes. Orchestrating cloud resources requires coordination of hardware resources and

software resources. In addition to traditional control and data flow programming constructs, there is a need for rich ab-

stractions to support consistency across physical and logical layers, exception handling, and flexible, efficient coordina-

tion and management of resources. All of this has to balance the tensions between the rich semantics and simplicity of

comprehension, which are the keys to success in practice. Moreover, resource orchestration in cloud environments is

complicated due to the scale, heterogeneity, diversity of resource types, and uncertainties of the underlying cloud envi-

ronment. Apart from heterogeneous software and hardware resources, the integration and interoperation dependencies

intensify the challenge of building application architecture over the cloud[1].

The contributions of this study are i) proposing technical dimensions for CROF analysis, and ii) analyzing the strength

and weakness of overriding frameworks against the dimensions. We also discuss the recent and most relevant research

work concerning each dimension.

2. Dimensions for evaluating Resource Orchestration Frameworks

The diversity of CROFs make the decision making process hard for every software engineers, solution architects, or

administrators who wants to migrate their applications to cloud. Having concrete dimensions that give an insight into

comparative features of CROFs eases the task of cloud framework selection. We consider the following dimensions

Application Domain, Resource Type, Resource Access Component, Interoperability, Resource Selection, Application

Deployment, and QoS Adaptation dimensions which evaluate Why, What, and How platforms do resource orchestration

tasks:.

• Application Domain: This dimension refers to the type of applications that the frameworks have been targeted and

customized for including multi tier web applications and CDN, and Large-scale data processing (also referred as

Big Data). Multi-tier web application refers to migrating in-house web, mobile, or gaming applications to public or

private clouds in order to meet further scalability, availability, etc., conducting Development and Test activities on

cloud environment, and the like.

CROFs with CDN application target gives businesses and web application developers an easy and cost effective

way to distribute contents (e.g. images, videos, web pages, etc.) to sporadic geographical locations with low latency

and high data transfer speeds. To do so, CDN offerings normally use Edge Computing that pushes the frontier of

computing applications, data, and services away from centralized nodes to the various servers on the edge of the In-

ternet.

CROFs with large-scale data-intensive computing platforms are predominantly relying on the simple yet effective

programming model, i.e. MapReduce [3]. This model is inherently a divide-and-conquer strategy where a single

problem is broken into multiple individual subtasks including various instance of Map and Reduce tasks. This ap-

proach is reinforced even more via parallelizing subtasks in a cluster of machines.

• Resource Type: This dimension refers to the resource type the framework capable of orchestrating: i) Infrastruc-

ture or hardware resources such as network (i.e. IP Type, Ports, etc.), CPU (i.e. cores, addressing bit), and BLOB

Storage (i.e. storage size, format, etc.); ii) Platform resources including application servers (e.g. Java application

server), monitoring services, database servers, and the like; iii) Software components and sub-processes such as

Customer Relationship Management (CRM) business process that is formed and executed via orchestrating soft-

ware components to deliver a business service to the end users as such the Salesforce CRM3 offers. These catego-

ries are mapped to the so-called cloud service model that is IaaS, PaaS, and SaaS.

• Resource Access Component: This dimension refers to the mode of interaction with the cloud resources. Interfaces

are the high-level abstractions through which an administrator manipulates cloud resources. Currently, there are

three types of interfaces supported by resource orchestration frameworks:

2 http://cloud-standards.org
3 http://www.salesforce.com/au/sales-cloud/overview/

o Low-level command line tool that wrap the cloud specific API actions as commands or scripts. These com-

mands can be executed either through Linux (bash or sh) or windows-based (command.com or cmd.exe) shell

execution environments. While command line orchestration frameworks can be easier to implement, its usage

warrants high-level of technical expertise and understanding about cloud resources and related orchestration

operations.

o Web based system dashboard that represents cloud resources by user-friendly, visual artifacts (buttons, check

boxes, etc.), and resource catalogs. Visual artifacts and catalogs aim at simplifying selection, assembly and

deployment of hardware and software resources. A catalog manages sets of resource entities that can be instan-

tiated to create CPU, storage, and network objects. System dashboard also features editor where one can as-

semble and deploy applications by dragging appliance entities from catalog, and integrating and configuring

them together via customized configuration management interfaces. Clearly, web based system dashboard of-

fers higher level of simplicity and flexibility to administrators as compared to command line tools.

o Web services API that enables other tools (e.g. monitoring tools) and systems (e.g. provisioning systems) inte-

grate or use cloud resource management operations into their functionalities. Clearly, Web service API pro-

vides the higher level of abstraction and following simplicity. In particular, when some functionalities from the

cloud platform has to be integrated to other tools and systems, comparing to the other modes of UI.

• Interoperability: One of the key barriers for cloud computing adoption is interoperability. Therefore, the platform

that has higher level of interoperability with other public or private clouds has a higher chance to be adopted by the

industries. To do so, the platforms, more than past, try to expand their multi cloud capability. Consequently, this

dimension refers to the ability of a resource orchestration framework to port application across multiple clouds or

to use resources from multiple clouds for composing and hosting applications. Interoperability is necessary to avoid

cloud provider lock-in. However, designing and implementing generic resource orchestrators that can work with

various clouds is nontrivial as it requires APIs specific to each cloud providers.

We classify the interoperability of orchestration frameworks into hybrid (or multi cloud) and homogeneous (or sin-

gle cloud) categories. Hybrid resource orchestrator operates across multiple clouds, transparently integrating their

resources (IaaS, PaaS, and SaaS) as part of single resource leasing abstraction. With hybrid orchestrator, adminis-

trator can manage and automate the movement of application across clouds as well as communications between re-

sources hosted in different clouds. In contrast, a homogeneous orchestrator is only capable of orchestrating the re-

sources of single cloud provider or set of providers who apply similar technology stack to manage their resources.

• Resource Selection: This dimension refers to the level of automation supported by orchestration framework as re-

gards to selection of software and hardware resources. Selection process involves identification and analysis of al-

ternatives (cloud resources) based on the preferences of the decision maker (administrator). Making a selection im-

plies that there are alternative choices to be considered, and in such a case administrator not only needs to identify

as many of the alternatives as possible but also to choose the one that best fits their selection criteria.

We classify the resource selection approaches into Manual and Automated categories. In the manual approach, a re-

source orchestrator assumes that the administrators have high level of technical knowledge that can help them in se-

lecting the most appropriate clouds resources. In contrast, in an automated selection approach, an orchestrator im-

plements a Recommendation System (RS) [4], [5], [6] that helps the administrator to select the optimal resources

that best fits the QoS, feature, and cost needs. The RS ranks different resources based on certain selection criteria

and present to the administrator so that they can select the most appropriate ones.

• Application Deployment: The scale and complexity of applications and cloud resources make them increasingly

difficult and expensive to administer and deploy. A recent study of enterprise applications of Fortune 100 compa-

nies [7] has revealed interesting facts. The total number of distinct appliances in each application varies from 11 to

over 100 depending on the nature of the application. In some of these applications, there are up to 19 distinct front-

end web servers, 67 application servers, and 21 back-end databases. Clearly, application deployment technique

needs to cater for dependencies across appliances for ensuring error-free configurations. Existing deployment tools

provide varying levels of automation, typically categorized as manual, script-, language-, and model-based ap-

proaches. Higher level of automation in application deployment is preferred for improved correctness, speed, and

documentation.

In the manual approach, appliances are configured and integrated manually by inserting the XML/text snippets into

configuration files. Script-based approach consists of a set of shell scripts, which are executed on CPU resources

hosting appliances. These scripts directly modify the appliance-specific configuration file. Both manual and script-

based approaches have limited ability to express dependencies, react to changes, and verify configurations, which

results in erroneous application configuration for large scale deployments. Language-based approaches declarative-

ly define appliance configurations. They provide powerful system modeling capabilities and an expressive notation

for describing configurations. Model-based approach defines a desired state for each appliance. Once instantiated

on CPU resources, appliances automatically fetch and execute their state definition from centralized repository.

Language and model-based approaches are capable of handling dependencies across appliances and automatically

react to changes, such as resource failure, and activating adaptation actions.

• Run-time QoS Adaptation: This dimension refers to the degree to which a resource orchestrator is able to adapt to

dynamic exceptions. Adaptation, in general is realized either manually or automatically. In a manual manner, pro-

vided an event occurs, for example reaching a threshold, the framework does not provide any auto-scaling facility

and in the best case it will alert the administrator via an email or message to manually configure the instances in

order to accommodate to new conditions. On the contrary, in an automatic fashion the frameworks will adapt to ex-

ceptions through some reactive and predictive techniques. Reactive techniques respond to events only after reach-

ing a predefined threshold that is determined through monitoring the state of hardware/software resources. While

these techniques are simple to define and implement (nothing more than an if-then-else statements in nature), they

are not sufficient to ensure guaranteed QoS provided a peak demand for resources, for example.

Predictive techniques can dynamically anticipate and capture the relationship between application’s QoS targets,

current hardware resource allocation and changes in application workload patterns to adjust hardware allocation.

Overall, predictive techniques [6], [8], [9] build upon the integration of theoretical workload prediction and re-

source performance models. Workload prediction models forecast workload behavior across applications in terms

of CPU, storage, I/O, and network bandwidth requirements. The aforementioned models form the basis for the next

generation of a dependable resource provisioning framework, in which there is complete understanding of work-

load and resource demands and therefore improve resilience to uncertainties.

3. Analysis of CROFs

There are a number of CROFs at hand in which we choose 14 important ones that satisfy following conditions; i) cover-

ing both proprietary and open source offerings, ii) having reasonable active members iii) having a stable versions, and

iv) providing good documentation. This section presents the analysis of these frameworks against the dimensions.

Moreover, regarding the laxity of embodiment and acknowledgement of what is proposed in academia by the industry

and implementing commercial solutions, we investigate the latest research studies, in particular, in resource selection,

application deployment, and run-time adaptation dimensions.

3.1. Application Domain Analysis

Most of the existing off-the-shelf or open source cloud computing platforms do support managing/migrating in-house

multi-tire web applications over/to cloud environment. As Table 1 denotes, CloudSwitch4, CA AppLogic5, Engi-

neYard6, Bitnami7, Amazon BeanSTalk8, CloudBees9, RightScale10 are a number of frameworks in this application cate-

gory. Our analysis confirms that there are few platforms for other applications as regard to different application types

particularly web applications.

RightScale, GoGrid11, and RackSpace12 are the frameworks that have large scale data processing target as well; however

Amazon and Google offers independent platforms, that is Amazon Elastic MapReduce13 and Google BigQuery14. The

solutions for large scale data processing are almost built upon Hadoop15, an open source framework, in which data and

processes are distributed across a resizable cluster of computing server instances. In this regard, once the application

and data get ready for processing, it is up to administrator to specify and configure the number and types of computing

resources to crunch the deluge of data. This task is very challenging because large-scale data processing platforms (e.g.

Hadoop) have numerous configuration parameters (even up to ~200) in which ad-hoc setting significantly impact job

performance. Therefore, CROFs should equip users with what-if analysis capabilities through which users will be able

to configure and tune respectively cloud resource parameters and data intensive computing platform settings at IaaS and

PaaS layers.

Among the analyzed frameworks, GoGrid and Rackspace also offer CDN services in which Rackspace uses Akamai

network16 for delivering contents efficiently to edge nodes. Amazon for CDN application introduces CloudFront17 that is

4 http://www.cloudswitch.com/page/enterprise-cloud-computing-product-overview [Accessed on 1/10/2013]
5 http://www.ca.com/au/cloud-platform.aspx [Accessed on 1/7/2013]
6 https://www.engineyard.com/products/cloud [Accessed on 1/7/2013]
7 http://bitnami.com/stacks [Accessed on 13/6/2013]
8 http://aws.amazon.com/elasticbeanstalk/ [Accessed on 15/3/2013]
9 http://www.cloudbees.com/ [Accessed on 16/7/2013]
10 http://www.rightscale.com/ [Accessed on 10/8/2013]
11 http://www.gogrid.com/ [Accessed on 10/5/2013]
12 http://www.rackspace.com.au/ [Accessed on 12/6/2013]
13 http://aws.amazon.com/elasticmapreduce/ [Accessed on 1/11/2013]
14 https://cloud.google.com/products/big-query [Accessed on 1/11/2013]
15 http://hadoop.apache.org/ [Accessed on 1/8/2013]
16 http://www.akamai.com/ [Accessed on 11/3/2013]

integrated with other Amazon Web Services to distribute content to end users with low latency, high data transfer

speeds.

3.2. Resource Type Analysis

A majority of cloud frameworks orchestrate virtual appliances (application servers, database servers, etc.) in PaaS layer

based on the infrastructure assets of big companies that is Amazon and its offerings such as Amazon EC218 and S319

for computing and storage requirements, respectively; whereas some others such as Google App Engine (GAE)20 oper-

ates on Google datacenters and Windows Azure21 that builds upon Microsoft infrastructure services.

Apart from the above-mentioned proprietary IaaS platforms, there exist some open source solutions including OpenS-

tack22(as serves the IaaS layer of many frameworks such as RackSpace, NeCTAR23, etc.), OpenNebula24, CloudStack25,

and Eucalyptus26. Amongst these open source IaaS community, OpenStack and CloudStack, both as Apache-licensed

cloud computing programs, are most welcome by the user based on their well-defined and documented APIs and also

Amazon Web Service. In this regard, a recent study27 shows OpenStack has the largest active population followed by

CloudStack, Eucalyptus, and OpenNebula.

3.3. Resource Access Component Analysis

Resource access component is one of the key capabilities that facilitates the orchestration operations on virtual ap-

pliances and to do so, all the under examination frameworks do support web-based interfaces. The provided UIs from

cloud frameworks usually do not differentiate between public users and administrators in terms of the simplicity and

richness. However, OpenNebula offers various kinds of UI for accessing with virtual computing environment via two

different remote cloud interfaces (i.e. web services), OCCI28 and EC2, and through two web interfaces, OpenNebula

Sunstone and OpenNebula SelfService in which the former is for administrators and the latter for public users.

Having Web API is yet another important feature that increases the chance of administrators and developer to employ

the orchestrator functionalities into their own tools, if needed. In this regard, as the table 1 shows, most of the under dis-

cussion frameworks propose APIs (including REST-full, SOAP-based, etc.), though the functionalities they provide

sometimes are more limited than their web UI. For example, EngineYard is working on having the API as a first class

citizen on their platform.

3.4. Interoperability Analysis

RightScale is one of the pioneers in meeting interoperability requirement. As table 1 shows, it supports more than ten

public or private clouds via its Multi-Cloud Platform through which cloud-specific differences are abstracted so that us-

er can focus on running applications and access the resources via his own terms from either the RightScale Dashboard

or API.

CohesiveFT29 is another most interoperable platform that provides a kind of software factory for assembling and dep-

loying servers to many either public or private cloud platforms. In the same manner, CloudSwitch30 offer a topology

manager that abstracts the details of a cloud provider from the provisioning and management infrastructure required by

an application. This means that CloudSwitch could accommodate new providers by allowing their interfaces to be mod-

eled and installed while none of the existing cloud providers get affected.

Amazon Web Services as regard to its dominance and usage span by many users is considered as a target of interopera-

bility of almost every cloud providers. CloudStack, OpenStack and also Windows Azure are supposed to be yet another

17 http://aws.amazon.com/cloudfront/ [Accessed on 6/11/2013]
18 http://aws.amazon.com/ec2/ [Accessed on 15/3/2013]
19 http://aws.amazon.com/s3/ [Accessed on 15/3/2013]
20 https://developers.google.com/appengine/ [Accessed on 15/5/2013]
21 http://www.windowsazure.com/en-us/ [Accessed on 10/7/2013]
22 http://www.openstack.org/ [Accessed on 1/3/2013]
23 http://nectar.org.au/ [Accessed on 11/10/2013]
24 http://opennebula.org/ [Accessed on 11/8/2013]
25 http://cloudstack.apache.org/ [Accessed on 1/11/2013]
26 http://www.eucalyptus.com/ [Accessed on 4/11/2013]
27www.eucalyptus.com/blog/2013/07/03/cy13-q2-community-analysis-openstack-vs-opennebula-vs-eucalyptus-vs-cloudstack [Accessed on

30/10/2013]
28 Open Cloud Computing Interface: http://opennebula.org/documentation [Accessed on 1/11/2013]
29 http://www.cohesiveft.com/ [Accessed on 4/11/2013]
30 http://www.cloudswitch.com/files/CloudSwitch-Enterprise-Data-Sheet.pdf [Accessed on 1/4/2013]

candidate to be targeted for interoperability and as the table 1 denotes they are supported by Bitnami, OpenNebula, En-

gineYard, and CloudBees.

From another perspective, recent developments including Delta Cloud31 and JCloud32 simplify the interoperability task

by implementing single API that abstracts APIs related to multiple clouds. For example, Delta Cloud abstracts roughly

15 cloud providers such as Amazon EC2, GoGrid, OpenNebula, OpenStack, Rackspace, Eucalyptus, Terremark33, and

Windows Azure APIs into single API in its recent release. Although aforementioned APIs can simplify implementation

across multiple clouds, developers still need to cater for the heterogeneities that prevail in terms of appliance packaging,

virtualization technology, resource naming, etc.

Table 1: Mapping of orchestration frameworks to evaluation dimensions

CROF Application Do-

main

Resource

Type

Resource Access

Component

Interoperability Resource

Selection

Mode

Application

Deployment

Mode

Run-time

Adaptation

CloudSwitch Web Application

(migration)

PaaS • Web portal

• Web service API

• Command line

Multi cloud

(Amazon EC2,

Terremark)

Manual • Script based

• Model based

Manual

RightScale

• Web, Gam-

ing, and Mo-

bile App

• Large Scale

Data

Processing

• Development

and test

PaaS • Web portal

• API

• Command line

Multi cloud

(Amazon Web

Service, Data-

pipe, Google

Compute Engine,

HP Cloud, IDC

Frontier, Rack-

space, Softlayer,

Windows Azure,

CloudStack,

OpenStack)

Manual • Script based

• Language

based

Reactive

CA Ap-

pLogic

Web Application

PaaS • Web portal

• Web service API

• Command line

Single cloud Manual • Script based

• Language

based

• Model based

Reactive

Engine Yard

Web and Mobile

Application

PaaS • Command line

• Web portal

• API

Multi cloud

(Amazon Web

Service, Win-

dows Azure,

CloudStack, Ter-

remark)

Manual • Script based

• Language

based

Manual

Bitnami

Web Application PaaS • Command line

• Web portal

Multi cloud

(Amazon Web

Service, Win-

dows Azure,

Amazon EC2,

RightScale)

Manual Script based Reactive

Amazon

BeanSTalk

• Web Appli-

cation

• Development

and Test

• Large Scale

Data

processing

with its

Amazon

Elastic Ma-

pReduce so-

lution

• CDN with

PaaS • Web portal

• API

• Command line

Single Cloud

(Amazon EC2,

S3)

Manual • Manual

• Script based

(for boot-

strapping

applications

via AWS

CloudFor-

mation)

Reactive

31 http://deltacloud.apache.org/ [Accessed on 4/11/2013]
32 http://jclouds.incubator.apache.org/ [Accessed on 2/10/2013]
33 http://www.terremark.com/ [Accessed on 4/11/2013]

CloudFront

solution

CloudBees

• Web Appli-

cation

• Development

and Test

PaaS • Web portal

• API

• Command line

Multi Cloud

(Amazon Web

Service, OpenS-

tack, HP Cloud

Services)

Manual Manual Reactive

OpenNebula

None (Like

OpenStack and

Amazon EC2

propose only IaaS

services)

IaaS • Web portal

• Web service API

• Command line

Multi Cloud

(vCloud, OpenS-

tack, Eucalyptus,

Amazon EC2)

Manual • Manual

• Model based

Reactive

Eucalyptus

• Development

and Test

IaaS and

PaaS

• Web portal

• REST-based API

• Command line

Multi Cloud

(Amazon Web

Services)

Manual Manual

Reactive

CohesiveFT

• Web applica-

tion (migra-

tion)

PaaS • Web Portal Multi Cloud

(IBM

SmartCloud En-

terprise , Ama-

zon EC2, Ama-

zon VPC,

ElasticHosts,

Cloud Sigma,

Flexiant, Euca-

lyptus, OpenS-

tack, and

vCloud)

Manual Model-based

Not Known

Google App

Engine

• Web and

Mobile Ap-

plication

• Development

and Test

• Large Scale

Data

processing

with Big-

Query solu-

tion

PaaS

(IaaS

services

are of-

fered

using

Google

Compute

Engine)

• Web portal

• REST-based API

Single cloud Manual Manual Reactive

Microsoft

Azure

• Web and

Mobile Ap-

plication

• Development

and Test

PaaS • Web Portal,

• Web Services,

• Command line

Multi Cloud

(Engine Yard)

Manual Manual Reactive

GoGrid • Large Scale

Data

Processing

• Web Appli-

cation

• CDN

• Development

and Test

IaaS and

PaaS

• Web Portal

• RESTful API

• Command line

Multi Cloud

(Windows

Azure)

Manual Manual Reactive

RackSpace • Large Scale

Data

Processing

• Web Appli-

cation

• CDN (uses

Akamai

IaaS and

PaaS

• Web Portal

• API

• Command line

Multi Cloud

(OpenStack)

Manual Manual Reactive

CDN)

3.5. Resource Selection Analysis

Majority of existing resource orchestration frameworks map to ad-hoc category (Table 1). This means, application

composition is prominently up to the administrator who has a great knowledge of balancing loads and demands. Even

though, the vast usage of cloud computing technologies forces the industries to work on some smarter approaches such

as recommender systems, the existing frameworks, in a short period, could provide some clues for administrators to

handle resource selection more precisely. For example, CloudSwitch offers an interesting function, referred to as

CloudFit34, which evaluates the fit of application composer’s requested configurations against the available Cloud re-

source offerings (such as Amazon EC2). CloudFit function ensures that cloud deployments operate with sufficient per-

formance and reliability by automatically selecting the appropriate combination of resources (e.g. processor, memory,

and storage). In a broader range, a cloud framework could employ the log files along with the best practices to adjust a

fitness function that balance between diverse pool of resources and users requirements as the expert systems do for

years in medical issues.

3.5.1. State of the Art in Resource Selection

There are a number of research work that target automatic resource selection. In [4] the authors present a framework

that automates the decision-making process based on a model and factors particularly for web server migration to the

cloud. Their framework leverages AHP method to automate the selection process based on a model, factors, and QoS

parameters. In [5] the authors present a new declarative approach for selecting cloud-based infrastructure services. Their

proposed CloudRecommender system automates the mapping of users’ specified application requirements to cloud ser-

vice configurations. In [6] the authors proposed an online resource management decision support system that addresses

both tasks scheduling and resource management optimization. The proposed system employs fuzzy and neural network

prediction method for predicting VM workload patterns and VM migration time.

3.6. Application Deployment Analysis

In terms of application deployment capability, the CA AppLogic is one step ahead comparing to the others via offering

a sound model-based deployment in which an administrator is able to define the workflow of appliances through drag-

ging and dropping the resources one after another. In this manner, user is able to specify the dependency between ap-

pliances in an application otherwise the resources will fire all at the same time. Another interesting feature is when you

stop an application; appliances will stop in the reverse order of how they started.

CloudSwitch also offers a model-based deployment approach, though in different abstraction level comparing to CA

AppLogic. CloudSwitch via Cloud Isolation Technology35, a sandboxing technology that hides the complexity of public

cloud hosting environment from an application, enables administrator to automatically assign Cloud resources to appli-

cation components, and every piece of data is encrypted end-to-end for achieving high level of security and privacy.

Such model based approach guarantees the application will work in the cloud just as if it is in the data center since all

the configurations such as IP address, MAC address, and identity will be the same. In the same abstraction level, Cohe-

siveFT enable images to be created and configured dynamically based on preferences which can afterwards be uploaded

to cloud infrastructure providers.

Amazon with AWS CloudFormation36 web service actually complements the deployment process of Amazon BeanS-

Talk. It automates the details of creating and managing a collection of related AWS infrastructure resources with the aid

of i) Template, a JSON-format, text-based file that describes all the required AWS resources for running application and

ii) Stack, the set of AWS resources that are created and managed as a single unit when a template is instantiated by

AWS CloudFormation. An interesting feature of CloudFormation is automatic rollback on error that guarantees stacks

are either fully created, or not at all.

3.6.1. State of the Art in Automatic Deployment

The recent promising study [10] presents a peer-to-peer architecture that uses a component repository to manage the

deployment of software components, enabling elasticity by using the underlying cloud infrastructure provider. The pro-

vided peer-to-peer architecture has three logical layer; i) Design tier that take the system description of the services, ii)

Management tier which manages provisioning of services, and iii) Cloud infrastructure tier that enables creation of on

demand infrastructure. A proof of concept implementation of the architecture is proposed that in design tier contains a

34 http://www.cloudswitch.com/page/cloudswitch-architecture-overview-white-paper [Accessed on 5/5/2013]
35 http://elasticserver.com/ [Accessed on 5/11/2013]
36 http://aws.amazon.com/cloudformation [Accessed on 6/11/2013]

template designer for both Eclipse and Netbeans IDEs and also it supports EC2 and an internal HP cloud platform in its

infrastructure tier. Since the implementation is open source, it is extensible to new components and features.

3.7. QoS Adaptation Analysis

In terms of adaptation dimension analysis, excluding CloudSwitch and EnginYard cloud frameworks that leave adapta-

tion and scalability of cloud to the administrator or developer through programmatic manual approach, all of the under

discussion frameworks are reactive (Table 1). Among these reactive platforms, there are cases in which the platform

leaves implementation of auto-scaling and run-time adaptation to the developer via providing different APIs. For exam-

ple, in GoGrid platform infrastructure scaling process is not automated. That is cloud users are allowed to manually

vary (scale or de-scale) configurations of the compute server and storage resources through the customer portal. In case

of virtualized compute server, the changes can be only affected for physical memory allocation, while the CPU and lo-

cal storage allocation remains the same. GoGrid gives developers an option of implementing custom auto-scaling ser-

vice through its API37.

3.7.1. State of the Art in QoS Adaptation

In terms of predictive QoS adaptation, the authors in [8] propose prediction-based resource measurement and provision-

ing strategies using Neural Network and Linear Regression. The prediction method uses historical data that is generated

by running a standard client–server benchmark on Amazon EC2 for training forecasting models. Unlike [8] which dis-

cusses the generic prediction framework, the authors in [9] employ a predictive models for resource provisioning for

read intensive multi-tier applications in the cloud. Yet another work that uses time series methods is [11] in which the

authors develop a resource prediction and provision scheme that uses Autoregressive Integrated Moving Average

(ARIMA) time series analysis for prediction model.

Another interesting work is [12] in which they present an online temporal data mining system to model and predict the

cloud VM demands. In fact, their system extract high level characteristics from VM request stream and notify the provi-

sioning system to prepare VMs in advance.
4. Conclusions

Diversity of cloud management framework offerings makes the process of decision making for software engineers, so-

lution architects, or infrastructure administrators challenging. To address such an issue, this study explores the capabili-

ties of the overriding cloud platforms in terms of following dimensions: application domain, resource type, resource

access component, inter-operability, resource selection, application deployment, and QoS adaptation, that altogether

shed light on why, what, and how these frameworks do the resource orchestrations operations.

Acknowledgement

Rajiv Ranjan's research at CSIRO is funded by Australia India Strategic Research Grant titled "Innovative Solutions for

Big Data and Disaster Management Applications on Clouds (AISRF-08140)". The funding body is Department of In-

dustry, Australia.

References

[1] Ranjan R, Benatallah B: “Programming Cloud Resource Orchestration Framework: Operations and Research Challenges”.19.

Technical report, arXiv:1204.2204, Published Online on 10 April 2012

[2] Grace A. Lewis, “Role of Standards in Cloud-Computing Interoperability” IEEE, 46th Hawaii International Conference on Sys-

tem Scieneces, pp. 1652-1661, 2012

[3] Dean, Jeffrey, and Sanjay Ghemawat. "MapReduce: simplified data processing on large clusters." Communications of the ACM

51.1 (2008): 107-113

[4] Menzel, M.; Ranjan, R.; Wang, L.; Khan, S.; Chen, J., "CloudGenius: A Hybrid Decision Support Method for Automating the

Migration of Web Application Clusters to Public Clouds," Computers, IEEE Transactions on , vol.PP, no.99, pp.1,1 doi:

10.1109/TC.2014.2317188

[5] Miranda Zhang, Rajiv Ranjan, Surya Nepal, Michael Menzel, and Armin Haller. 2012. A declarative recommender system for

cloud infrastructure services selection. In Proceedings of the 9th international conference on Economics of Grids, Clouds, Sys-

tems, and Services (GECON'12), Kurt Vanmechelen, Jörn Altmann, and Omer F. Rana (Eds.). Springer-Verlag, Berlin, Heidel-

berg, 102-113. DOI=10.1007/978-3-642-35194-5_8

[6] Ramezani, Fahimeh, Jie Lu, and Farookh Hussain. "An online fuzzy Decision Support System for Resource Management in

cloud environments." IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), 2013 Joint. IEEE, 2013.

[7] Hajjat, Mohammad, et al. "Cloudward bound: planning for beneficial migration of enterprise applications to the cloud." ACM

SIGCOMM Computer Communication Review 40.4 (2010): 243-254.

[8] Islam, Sadeka, et al. "Empirical prediction models for adaptive resource provisioning in the cloud." Future Generation Computer

Systems 28.1 (2012): 155-162.

[9] Iqbal, Waheed, et al. "Adaptive resource provisioning for read intensive multi-tier applications in the cloud." Future Generation

Computer Systems 27.6 (2011): 871-879.

37 http://blog.gogrid.com/2013/04/23/how-to-create-an-auto-scaling-web-application-on-gogrid-part-1-theory/ [Accessed on 1/4/2013]

[10] Kirschnick, Johannes, et al. "Towards an architecture for deploying elastic services in the cloud." Software: Practice and Expe-

rience 42.4 (2012): 395-408.

[11] Fang, Wei, et al. "RPPS: A Novel Resource Prediction and Provisioning Scheme in Cloud Data Center." Services Computing

(SCC), 2012 IEEE Ninth International Conference on. IEEE, 2012.

[12] Jiang, Yexi, et al. "Asap: A self-adaptive prediction system for instant cloud resource demand provisioning." Data Mining

(ICDM), 2011 IEEE 11th International Conference on. IEEE, 2011.

Supplemental Material

Figure 2: Cloud resource orchestration framework (CROF) position in cloud ecosystem.

Alireza Khoshkbarforoushha is a Ph.D. candidate in the College of Engineering and Computer Science, The Australi-

an National University (ANU). He is also a Graduate Researcher with the Commonwealth Scientific and Industrial Re-

search Organization (CSIRO), Canberra, Australia. His research interests include large-scale data-intensive systems, da-

tabase-as-a-service, query resource management on cloud, and streaming workload management on cloud.

Contact details: Computer and Information Technology Building (Building 108), Australian National University, North

Road Acton ACT 2601, Australia; Tel: 61 2 62167115

Meisong Wang is a Master of Research student in the College of Engineering and Computer Science of ANU and an

assistant researcher at CSIRO. His research is around Cloud Computing, distributed TDT (Topic Detection Tracking)

based on Apache Hadoop ecosystem such as Mahout, Yarn, Hbase.

Contact details: Computer and Information Technology Building (Building 108), Australian National University, North

Road Acton ACT 2601, Australia

Dr. Rajiv Ranjan is a Julius Fellow (2013-2016), Senior Research Scientist and Project Leader in the Digital Produc-

tivity and Services Flagship of Commonwealth Scientific and Industrial Research Organization (CSIRO). Rajiv has

+100 scientific publications. His h-index is 24, with a total citation count of 3300+.

Contact details: Computer and Information Technology Building (Building 108), Australian National University, North

Road Acton ACT 2601, Australia; Tel: 61 2 6216 7047, Fax: 61 2 6216 7111

Dr. Wang is a Professor at Institute of Remote Sensing & Digital Earth, Chinese Academy of Sciences (CAS) and

a ChuTian Chair Professor at School of Computer Science, China Univ. of Geosciences (CUG). Prof. Wang received

his B.E. & M.E from Tsinghua Univ. and Doctor of Eng. from Univ. Karlsruhe, Germany. Prof. Wang is a Fellow of

IET, Fellow of British Computer Society. Prof. Wang leads high geo-performance computing group at CAS and the

High Performance Computing Lab at CUG. His main research interests include high performance computing, e-

Science, and spatial data processing.

Contact details: No.9 Dengzhuang South Road, Haidian District, Beijing 100094, P.R. China, Phone/Fax:86-10-

82178070

Dr. Leila Alem is a principal research scientist at the CSIRO’s ICT Centre Information Engineering research Laborato-

ry based in Sydney. Her formal training is in artificial intelligence and cognitive psychology. She has designed and eva-

luated numerous advanced decision support systems and advanced computer supported training. Over the last 18 years

of her career at CSIRO she has designed and evaluated various advanced user interfaces for domains including mining,

aviation, automotive and health. Her current research interest include: Human Computer Interaction, Computer me-

diated interaction, Evaluation of information systems.

Contact details: Crn Vimiera and Pembroke Roads, Marsfield NSW 2122, Tel: +61 2 9372 4366, Fax: +61 3 9545 8080

Samee U. Khan received a BS degree in 1999 from Ghulam Ishaq Khan Institute of Engineering Sciences and Tech-

nology, Topi, Pakistan, and a PhD in 2007 from the University of Texas, Arlington, TX, USA. Currently, he is Asso-

ciate Professor of Electrical and Computer Engineering at the North Dakota State University, Fargo, ND, USA. Prof.

Khan’s research interests include optimization, robustness, and security of: cloud, grid, cluster and big data computing,

social networks, wired and wireless networks, power systems, smart grids, and optical networks. His work has appeared

in over 250 publications.

Contact details: Samee U. Khan, Department of Electrical and Computer Engineering, North Dakota state University

Fargo, ND 58108, USA

Benatallah is a professor of Computer Science and Engineering at UNSW Australia. His research interests include API

engineering, Web services composition, federated cloud services orchestration, crowd sourcing services and business

process management. He published over 200 peer-reviewed papers on these topics. He has a PhD from Grenoble Uni-

versity, France. He is member of IEEE and ACM.

Contact details: Prof. Boualem Benatallah, School of Computer Science and Engineering, UNSW Australia, UNSW

SYDNEY NSW 2052, AUSTRALIA, Fax: (61) 2 93854767, Phone: (61) 2 93854767

